
Introduce LLVM from
a hacker's view.

Loda chou.

hlchou@mail2000.com.tw

2012/07/02

1

mailto:hlchou@mail2000.com.tw

 I am Loda.

 Work for 豬屎屋 (DeSign House).

 Be familiar for MS-Windows System and
Android/Linux Kernel.

 Sometimes…also do some software crack job.

 Like to dig-in new technology and share technical
articles to promote to the public.

 Motto

 The way of a fool seems right to him ,but a wise man
listens to advice. (Proverbs 12:15)

Who am I?

2

 Created by Vikram Adve and Chris Lattne on 2000

 Support different front-end compilers (gcc/clang/....) and different
languages (C/C++,Object-C,Fortran,Java
ByteCode,Python,ActionScript) to generate BitCode.

 The core of LLVM is the intermediate representation (IR). Different
front-ends would compile source code to SSA-based IR, and
traslate the IR into different native code on different platform.

 Provide RISC-like instructions (load/store…etc), unlimited registers,
exception (setjmp/longjmp)..etc

 Provide LLVM Interpreter and LLVM Compiler to run LLVM
application.

What is LLVM?

3

Let's enjoy it.

4

Android Dalvik RunTime

Dalvik ByteCode
Framework in JAR

Dalvik ByteCode AP in dex/odex

Partial Dalvik AP
implemented in

Native .so

Linux Kernel

Java Native Interface

Native .so library

Dalvik
Virtual Machine

5

 Per-Process per-VM

 JDK will compile Java to Sun’s bytecode, Android would
use dx to convert Java bytecode to Dalvik bytecode.

 Support Portable Interpreter (in C), Fast Interpreter (in
Assembly) and Just-In Time Compiler

 Just-In-Time Compiler is Trace-Run based.

 By Counter to find the hot-zone

 Would translate Dalvik bytecode to
ARMv32/NEON/Thumb/Thumb2/..etc CPU instructions.

The features of Dalvik VM

6

LLVM Interpreter RunTime

Native .so library

Linux Kernel

Running by LLI (Low Level Virtual Machine
Interpreter & Dynamic Compiler)

LLVM BitCode AP

7

 Could run llvm-application as the performance of native
application

 Could generate small size BitCode, translate to target
platform assembly code then compiled into native
execution file (final size would be almost the same as you
compile it directly from source by GCC or other compiler.)

 Support C/C++/… program to seamlessly execute on
variable hardware platform.
 x86, ARM, MIPS,PowerPC,Sparc,XCore,Alpha…etc

 Google would apply it into Android and Browser (Native
Client)

Why LLVM?

8

C/C++

Java

BitCode
Assembly

LLVM
Compiler ARM

Assembly

X86
Assembly

...etc

The LLVM Compiler Work-Flows.

Fortran

clang -emit-llvm

 llc -mcpu=x86-64

llc -mcpu=cortex-a9

ARM
Execution File

X86
Execution File

gcc

arm-none-linux-gnueabi-gcc
-mcpu=cortex-a9

9

LLVM in Mobile Device

C/C++

Java
ByteCode

Render
Script

BitCode

BitCode

BitCode

Application

10

Chromium
Browser

HTML/Java Script

Native Client APP

IMC
SRPC
NPAPI

Service Framework

Call to run-time
framework

IMC SRPC

Storage
Service

UnTrust Part

Would passed the security
checking before execution.

Trust Part

IMC : Inter-Module Communications
SRPC : Simple RPC
NPAPI : Netscape Plugin Application Programming Interface

LLVM in Browser

11

LLVM Compiler Demo.

Use clang to compile BitCode File.
[root@localhost reference_code]# clang -O2 -emit-llvm sample.c -c -o sample.bc
[root@localhost reference_code]# ls -l sample.bc
-rw-r--r--. 1 root root 1956 May 12 10:28 sample.bc

Convert BitCode File to x86-64 platform assembly code.
[root@localhost reference_code]# llc -O2 -mcpu=x86-64 sample.bc -o sample.s

Compiler the assembly code to x86-64 native execution file.
[root@localhost reference_code]# gcc sample.s -o sample -ldl
[root@localhost reference_code]# ls -l sample
-rwxr-xr-x. 1 root root 8247 May 12 10:36 sample

Convert BitCode File to ARM Cortext-A9 platorm assembly code.
[root@localhost reference_code]# llc -O2 -march=arm -mcpu=cortex-a9 sample.bc -o
sample.s

Compiler the assembly code to ARM Cortext-A9 native execution file.
[root@localhost reference_code]# arm-none-linux-gnueabi-gcc -mcpu=cortex-a9 sample.s -ldl -o
sample
[root@localhost reference_code]# ls -l sample
-rwxr-xr-x. 1 root root 6877 May 12 10:54 sample

12

Let’s see a simple sample
code.

What is the problems for LLVM?

13

 [root@www LLVM]# clang -O2 -emit-llvm dlopen.c -c -o dlopen.bc

 [root@www LLVM]# lli dlopen.bc

 libraryHandle:86f5e4c8h

 puts function pointer:85e81330h

 loda

LLVM dlopen/dlsymc Sample.

int (*puts_fp)(const char *);

int main()
{
 void * libraryHandle;
 libraryHandle = dlopen("libc.so.6", RTLD_NOW);
 printf("libraryHandle:%xh\n",(unsigned int)libraryHandle);
 puts_fp = dlsym(libraryHandle, "puts");
 printf("puts function pointer:%xh\n",(unsigned int)puts_fp);
 puts_fp("loda");
 return 0;
}

14

 Would place the piece of machine code as a data buffer
to verify the native/LLVM run-time behaviors.

Make execution code as data buffer

0000000000000000 <AsmFunc>:
 0: 55 push %rbp
 1: 48 89 e5 mov %rsp,%rbp
 4: b8 04 00 00 00 mov $0x4,%eax
 9: bb 01 00 00 00 mov $0x1,%ebx
 e: b9 00 00 00 00 mov $0x0,%ecx
 f: R_X86_64_32 gpHello
 13: ba 10 00 00 00 mov $0x10,%edx
 18: cd 80 int $0x80
 1a: b8 11 00 00 00 mov $0x11,%eax
 1f: c9 leaveq
 20: c3 retq

15

Native Program Run Code in Data
Segment

int (*f2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0x00,0xb9,0x4
0,0x0c,0x60,0x00,0xba,0x10,0x00,0x00,0x00,0xcd,0x80,0xb8,0x11,0x00,0x00,0x00,0xc9,0xc3};
char gpHello[]="Hello Loda!ok!\n";
int main()
{
 int vRet;
 unsigned long vpHello=(unsigned long)gpHello;
 TmpAsmCode[19]=vpHello>>24 & 0xff;
 TmpAsmCode[18]=vpHello>>16 & 0xff;
 TmpAsmCode[17]=vpHello>>8 & 0xff;
 TmpAsmCode[16]=vpHello & 0xff;
 f2=(int (*)())TmpAsmCode;
 vRet=f2();
 printf("vRet=:%d\n",vRet);
 return 0;
}

 [root@www LLVM]# gcc self-modify.c -o self-modify

 [root@www LLVM]# ./self-modify

 Segmentation fault

16

Native Program Run Code in Data
Segment with Page EXEC-settings

int (*f2)();
char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0x00,0xb9,0x4
0,0x0c,0x60,0x00,0xba,0x10,0x00,0x00,0x00,0xcd,0x80,0xb8,0x11,0x00,0x00,0x00,0xc9,0xc3};
char gpHello[]="Hello Loda!ok!\n";
int main()
{
 int vRet;
 unsigned long vpHello=(unsigned long)gpHello;
 unsigned long page = (unsigned long) TmpAsmCode & ~(4096 - 1);
 if(mprotect((char*) page,4096,PROT_READ | PROT_WRITE | PROT_EXEC))
 perror("mprotect failed");
 TmpAsmCode[19]=vpHello>>24 & 0xff;
 TmpAsmCode[18]=vpHello>>16 & 0xff;
 TmpAsmCode[17]=vpHello>>8 & 0xff;
 TmpAsmCode[16]=vpHello & 0xff;
 f2=(int (*)())TmpAsmCode;
 vRet=f2();
 printf("vRet=:%d\n",vRet);
 return 0;
}

 [root@www LLVM]# gcc self-modify.c -o self-modify

 [root@www LLVM]# ./self-modify

 Hello Loda!ok!

 vRet=:17

17

LLVM AP Run Code in Data Segment
with EXEC-settings

int (*f2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0x00,0xb9,0x40,0x0c,0x60,0x00,0xb
a,0x10,0x00,0x00,0x00,0xcd,0x80,0xb8,0x11,0x00,0x00,0x00,0xc9,0xc3};
char gpHello[]="Hello Loda!ok!\n";

int main()
{
 int vRet;
 unsigned long vpHello=(unsigned long)gpHello;

 unsigned long page = (unsigned long) TmpAsmCode & ~(4096 - 1);
 if(mprotect((char*) page,4096,PROT_READ | PROT_WRITE | PROT_EXEC))
 perror("mprotect failed");
 char *base_string=malloc(256);
 strcpy(base_string,gpHello);
 vpHello=(unsigned long)base_string;
 TmpAsmCode[19]=vpHello>>24 & 0xff;
 TmpAsmCode[18]=vpHello>>16 & 0xff;
 TmpAsmCode[17]=vpHello>>8 & 0xff;
 TmpAsmCode[16]=vpHello & 0xff;
 f2=(int (*)())TmpAsmCode;
 vRet=f2();
 printf("vRet=:%d\n",vRet);
 return 0;
}

 [root@www LLVM]# clang -O2 -emit-llvm llvm-self-modify.c -c -o llvm-self-modify.bc

 [root@www LLVM]# lli llvm-self-modify.bc

 Hello Loda!ok!

 vRet=:17

18

LLVM AP Run Code in Data Segment
without EXEC-settings?

int (*f2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0x00,0xb9,0x40,0x0c,0x60,0x00,0xb
a,0x10,0x00,0x00,0x00,0xcd,0x80,0xb8,0x11,0x00,0x00,0x00,0xc9,0xc3};
char gpHello[]="Hello Loda!ok!\n";

int main()
{
 int vRet;
 unsigned long vpHello=(unsigned long)gpHello;

 char *base_string=malloc(256);
 strcpy(base_string,gpHello);
 vpHello=(unsigned long)base_string;
 TmpAsmCode[19]=vpHello>>24 & 0xff;
 TmpAsmCode[18]=vpHello>>16 & 0xff;
 TmpAsmCode[17]=vpHello>>8 & 0xff;
 TmpAsmCode[16]=vpHello & 0xff;
 f2=(int (*)())TmpAsmCode;
 vRet=f2();
 printf("vRet=:%d\n",vRet);
 return 0;
}

 [root@www LLVM]# clang -O2 -emit-llvm llvm-self-modify.c -c -o llvm-self-modify.bc

 [root@www LLVM]# lli llvm-self-modify.bc

 Hello Loda!ok! It still works!
 vRet=:17

19

So…..What we got?

 LLVM could run data-segment as execution code.
 LLVM doesn’t provide a strict sandbox to prevent

the unexpected program flows.
 For installed-application, maybe it is ok. (could

protect by Android Kernel-Level Application Sandbox)
 How about LLVM running in Web Browser?

Running by LLI (Low Level Virtual Machine
Interpreter & Dynamic Compiler)

LLVM BitCode AP
Code

Data

Bidirectional
Function Call

20

Technology always come from
humanity!!!

21

 Provide the browser to run web application in native code.
 Based on Google’s sandbox, it would just drop 5%

performance compared to original native application.
 Could be available in Chrome Browser already.
 The Native Client SDK only support the C/C++ on x86 32/64

bits platform.
 Provide Pepper APIs (derived from Mozilla NPAPI). Pepper

v2 added more APIs.

Native Client(Nacl) - a vision of the
future

22

Hack Google's Native Client and get
$8,192

http://www.zdnet.com/blog/google/hack-
googles-native-client-and-get-8192/1295

23

http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295

 Data integrity

 Native Client's sandbox works by validating the untrusted
code (the compiled Native Client module) before running it

 No support for process creation / subprocesses

 You can call pthread

 No support for raw TCP/UDP sockets (websockets for TCP
and peer connect for UDP)

 No unsafe instructions

 inline assembly must be compatible with the Native Client
validator (could use ncval utility to check)

Security of Native Client

http://code.google.com/p/nativeclient/issues/list

24

How Native Client Work?

Chromium
Browser

Browsing WebPage
with Native Client.

Launch nacl64.exe to Execute
the NaCl Executable (*.NEXE) file.

25

Main Process and Dynamic Library

Chromium
Browser

C:\Users\loda\AppData\Local\Temp
 6934.Tmp (=libc.so.3c8d1f2e)
 6922.Tmp (=libdl.so.3c8d1f2e)
 6933.tmp (=libgcc_s.so.1)
 6912.tmp (=libpthread.so.3c8d1f2e)
 67D8.tmp (=runnable-ld.so)
 66AE.tmp (=hello_loda.nmf)
 6901.Tmp (= hello_loda_x86_64.nexe)

Server provided
Native Client Page

lib64/libc.so.3c8d1f2e
lib64/libdl.so.3c8d1f2e
lib64/libgcc_s.so.1
lib64/libpthread.so.3c8d1f2e
lib64/runnable-ld.so
hello_loda.html
hello_loda.nmf
hello_loda_x86_32.nexe
hello_loda_x86_64.nexe

Download the main process and
dynamic run-time libraries.

26

Dynamic libraries Inheritance
relationship

runnable-ld.so =(ld-nacl-x86-64.so.1)

libc.so.3c8d1f2e

libdl.so.3c8d1f2e libgcc_s.so.1 libpthread.so.3c8d1f2e

Hello Loda Process (.NEXE)

27

 PNaCl (pronounced "pinnacle")

 Based on LLVM to provided an ISA-neutral format for
compiled NaCl modules supporting a wide variety of target
platforms without recompilation from source.

 Support the x86-32, x86-64 and ARM instruction sets now.

 Still under the security and performance properties of
Native Client.

Portable Native Client (PNaCl)

28

LLVM and PNaCl

Refer from Google’s ‘PNaCl Portable Native Client Executables ’ document.

29

Libtest.pso

libtest.c app.c

App.bc

App.pexe

Libtest.so

pnacl-translate

App.nexe

pnacl-translate
Translate to
native code

Execute under Native Client
RunTime Environment

PNaCl Shared Libraries

http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture

30

http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture

 Trust with Authentication
 Such as the ActiveX technology in Microsoft Windows, it would

download the native web application plug-in the browser (MS
Internet Explorer). User must authorize the application to run in
browser.

 User-ID based Access Control
 Android Application Sandbox use Linux user-based protection to

identify and isolate application resources. Each Android
application runs as that user in a separate process, and cannot
interact with each other under the limited access to the
operating system..

Before SFI

31

User Space
Application

#1

User Space
Application

#2

User Space
Application

#3

Kernel Space
Device Drivers and Kernel Modules

UnTrust Code
Trust Code

Application could use kernel
provided services by System Call

Process individual
memory space

Process individual
memory space

Process individual
memory space

RPC RPC

General User/Kernel Space Protection

32

 CFI (CISC Fault Isolation)

 Based on x86 Code/Data Segment Register to reduce
the overhead, NaCl CFI would increase around 2%
overhead.

 SFI

 NaCl SFI would increase 5% overhead in Cortex A9 out-
of-order ARM Processor, and 7% overhead in x86_64
Processor.

Fault Isolation

1,ARM instruction length is fixed to 32-bits or 16bits
 (depend on ARMv32,Thumb or Thumb2 ISA)
2,X86 instruction length is variable from 1 to 1x bytes.

33

Target
Address

Data/Code Dedicated Register=
(Target Address & And-Mask Register) | Segment Identifier Dedicated Register

UnTrust Code
Region

Address
SandBoxing

Address
SandBoxing

CISC Fault Isolation

34

User Space
SFI

Trust Code

Kernel Space
Device Drivers and Kernel Modules

UnTrust Code
Trust Code

Application could use kernel
provided services by System Call

Process individual memory space

User Space
SFI

UnTrust
Code

Call
Gate

Return
Gate

Running in Software Fault Isolation Model

Software Fault Isolation

35

 PNaCl would download the whole execution environment (with
dynamic libraries)

 Would use x86_64 environment as the verification sample.
 Each x86_64 App would use 4GB memory space.

 But for ARM App, it would only use 0-1GB memory space.

 x86_64 R15 Registers would be defined as “Designated Register
RZP” (Reserved Zero-address base Pointer),and initiate as a 4GB
aligned base address to map the UnTrust Memory space. For the
UnTrust Code, R15 Registers is read-only.

SFI SandBox

36

 The modification of 64bits RSP/RBP would be replaced by a
set instructions to limit the 64bits RSP/RBP would be limited
in allowed 32bits range.

RSP/RBP Register Operation

......
10001e0: 8b 2c 24 mov (%rsp),%ebp
10001e3: 4a 8d 6c 3d 00 lea 0x0(%rbp,%r15,1),%rbp
10001e8: 83 c4 08 add $0x8,%esp
10001eb: 4a 8d 24 3c lea (%rsp,%r15,1),%rsp
.....

37

 The function target address would be 32 bytes alignment,
and limit the target address to allowed 32bits range by R15.

 For the internal UnTrust function directly calling, it doesn’t
need to filter by the R15

 vRet=987*testA(111);

Function Call

…..
 1000498: 83 e0 e0 and $0xffffffe0,%eax
 100049b: 4c 01 f8 add %r15,%rax
 100049e: ff d0 callq *%rax
…..

….
10004bb: e8 c0 fe ff ff callq 1000380 <testA>
10004c0: 69 c0 db 03 00 00 imul $0x3db,%eax,%eax
….

38

 The function return address would be 32 bytes alignment,
and limit the target address to allowed 32bits range by R15.

Function Return

…..
10004e8: 83 e1 e0 and $0xffffffe0,%ecx
 10004eb: 4c 01 f9 add %r15,%rcx
 10004ee: ff e1 jmpq *%rcx
…..

39

For Hacker’s View

40

 LLVM support IR and could run on variable processor
platforms.

 Portable native client + LLVM should be a good
candidate to play role in Android and Browser usage.
(in SFI SandBox)

 It is a new security protection model, use user-space
Sandbox to run native code and validate the native
instruction without kernel-level privilege involved.

Conclusion

41

Appendix

42

 From compiled execution code

 LLVM transfer to 100% native code. Dalvik VM need to based
on the JIT Trace-Run Counter.

 From the JIT native-code re-used

 After Dalvik VM process restart, the JIT Trace-Run procedures
need to perform again. But after LLVM application transfer to
100% native code, it could run as native application always.

 From CPU run-time loading

 Dalvik application need to calculate the Trance-Run Counter in
run-time and perform JIT. LLVM-based native application
could save this extra CPU loading.

The differences of Dalvik and LLVM (1/2)

43

 From the run-time memory footprint
 Dalvik application convert to JIT native code would need extra

memory as JIT-Cache. If user use Clang to compile C code as
BitCode and then use LLVM compiler to compile the BitCode to
native assembly, it could save more run-time memory usage.

 If Dalvik application transfer the loading to JNI native .so library, it
would need extra loading for developer to provide .so for different
target processors’ instruction.

 From the Storage usage
 General Dalvik application need a original APK with .dex file and

extra .odex file in dalvik-cache. But LLVM application doesn’t need
it.

 From the system security view of point
 LLVM support pointer/function-pointer/inline-assembly and have

the more potential security concern than Java.

The differences of Dalvik and LLVM (2/2)

44

 NaCl is salt

 Download the native client source code

 http://code.google.com/p/nativeclient/wiki/Source?tm=4

 cd $NACL_ROOT

 gclient config
http://src.chromium.org/native_client/trunk/src/native_cl
ient

 gclient sync

NaCl Source Code

http://code.google.com/p/nativeclient/issues/list

45

http://code.google.com/p/nativeclient/wiki/Source?tm=4
http://code.google.com/p/nativeclient/wiki/Source?tm=4

Native Client Page Content

<html>
<body ...>
....
 <div id="listener">

 <embed name="nacl_module"
 id="hello_loda"
 width=200 height=200
 src="hello_loda.nmf"
 type="application/x-nacl" />
 </div>
</body>
</html>

{
 "files": {

 "libgcc_s.so.1": {

 "x86-64": {
 "url": "lib64/libgcc_s.so.1"
 },

 },

 "main.nexe": {

 "x86-64": {
 "url": "hello_loda_x86_64.nexe"
 },

 },

 "libdl.so.3c8d1f2e": {

 },

 "libc.so.3c8d1f2e": {

 },

 "libpthread.so.3c8d1f2e": {

 },
 "program": {
 "x86-64": {

 "url": "lib64/runnable-ld.so"

 },

 }
}

46

End

47

