“egg” — A Stealth fine grained
code analyzer

FFRI
\

Yuji Ukai - Chief Executive Officer
Satoshi Tanda — Senior Engineer

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

FFRI
Agenda A\

Background and problems

Introduce “egg”

— Demonstration its basic functions

Implementation (Taint tracing approach in ring—0)

— Demonstration of the taint tracing behavior

Discuss a limitation of “egg”

Conclusion

FFRI
\

Too many malwares!

The percentage of packed

malwares

100

90

38 80% of malwares ware
o packed in 2007
40

30

20 ——mmm

10 -

0 T .)

2001 yr 2003 yr 2005 yr 2007 yr

’
We can t manually analyze each malware.

Automatic approaches have become more important.

Source:
2001-2005 : McAfee Sage vol.1 issue 1
2007 : Panda Research (http://research.pandasecurity.com/malwareformation-statistics/)

http://research.pandasecurity.com/malwareformation-statistics/
http://research.pandasecurity.com/malwareformation-statistics/
http://research.pandasecurity.com/malwareformation-statistics/

Problems of traditional dynamic analyzers

We can’ t get useful information for more intensive analysis.
We can’ t analyze a kernel mode code.

It’ s difficult to analyze a spreading malware over the process.

petail \

Tyoes REG- Le
REGBINRY,

e e BIMARL V0

Threag 10 4592

Thread 10: 74

Thread 10

e
376, \Jsz\
g5: Read:
sired Access
\\7725\&& Access: fead
Length: 12
d
4 hccess: B
DTﬁ\ereRE&NuME, Lenat

fesired hCcess® ‘;E;al;;
esired ACCESS
Length: 12

1
 hocess: Red
%iEEREE,NBNE, veagt

4 hocess: Read

Dasire . ent <
Typer REGDICHD. 1 :

FFRI

lJump Search View Debugger

2 BB S Ve B0 ddetF-FuX >

m-
[———)
[Ewaview-s @ | [T Hex view-a [[A stuctures [|

x

Fewms 0 [Simpors 5 | FEP

int __stdcal | _DIlTnstanceInit (ADDULE hLibMocule,
e

100.00%) (51,-31) (598,2) 000OLETT TEREZETT:

Autoanalysis subsystem has been initialized.
o saved x36emu state data wes Zound.
xg6emu: No saved xS6emu state data wes
Database for file 'winmm.dll' is loaded.
"Ci\Program Files (x86)\IDA\idc\ida.idc'...
" '

FFRI
\

Innovative analyzers (based on VM environments)

Innovative analyzers have already resolved the above
problems®©

— Anubis

— Ether

- It’ s able to analyze a kernel mode code and perform an
instruction level analysis.

— BitBlaze and Renovo

- Also these analyze a spreading malware automatically with
approach called “taint tracing”.

However these systems are detected by VM detection
techniques®

FFR{
Summary table of problems

Type of system Traditional Innovative
(Based on virtual

environments)

Getting useful information Insufficient Good
Analyzing a kernel mode code Insufficient Good
Analyzing a spreading malware. Insufficient Good
Not affected by VM detection techniques Good Insufficient

[developed “egg”’ to try and resolve these problems.

FFRI
\

What is egg?

“egg” is a dynamic analyzer based on a Windows device driver.

egg has following capabilities:
1. It can obtain more detailed information.
2. It can analyze a kernel mode code.

3. It can automatically trace a spreading malware.

Of course, It’ s not affected by VM detection techniques.

Also most common anti—debug tech can’t detect “egg’.

FFRI
\

What kind of information does “egg’ collect?

1. API arguments for IN, OUT (INOUT), and return value

BOOL WINAPI| ReadFi le(

_in HANDLE hFile,
__out LPVOID [pBuffer,
__in DWORD nNumberOfBytesToRead,

__out_opt LPDWORD |pNumberOfBytesRead,
__inout_opt LPOVERLAPPED I[pOver |apped
)i

FFRI
\

What kind of information does “egg’ collect?

1. API arguments for IN, OUT (INOUT), and return value

BOOL WINAPI ReadFile(
= _ in HANDLE hFile,
__out LPVOID [pBuffer,
_in DWORD nNumberOfBytesToRead,
__out_opt LPDWORD |pNumberOfBytesRead,

__inout_opt LPOVERLAPPED I[pOver |apped
)i

call to kernel32.dl|!ReadFile(
=T Arg 1 : 00000064 = File : ¥Device¥HarddiskVolumel¥WINDOWS¥ (. ..) ,
——> Arg 3 : 00000800 (2048)

)

FFRI
\

What kind of information does “egg’ collect?

1. API arguments for IN, OUT (INOUT), and return value

| BOOL WINAP| ReadFile(

_in HANDLE hFile,
== out LPVOID |pBuffer,
_in DWORD nNumberOfBytesToRead,

__out_opt LPDWORD |pNumberOfBytesRead,
__inout_opt LPOVERLAPPED I[pOver |apped

)

call to kernel32.dl|!ReadFile(
Arg 1 : 00000064 = File : ¥Device¥HarddiskVolumel¥WINDOWS¥(...) ,
Arg 3 : 00000800 (2048)

)

returned from kernel32. dl|1ReadFile(
—p Arg 2 : 0012F184 - 0012F983 is dumped as ¥(...)¥(...)ReadFile Arg02.bin
=) => 00000001 (1)

What kind of information does “egg’ collect?

2. Callgraph

3. Branch information

0x00381843 15178

0x00381481

Callgraph

(made with Graphviz)

FFRI
\

Branch Info
(with IDA Pro)

00381429 cmp eax, 431h
0038142E jnz short loc_381442

00381416 push eax
00381417 call ds:off_383028
00381417 5 [144](1517672)-> advapi32_CreateServiceA
00381410 mov esi, eax
0038141F cmp esi, ebx
00381421 jnz short 10c_38144D
00381421 5 [144]1(15176°3)-> loc_38144D
F Ll

N Ll

10381423 call ds:0f1_383090

00381430 push edi
00381431 push

0038143E cmp esi,

ebp
00381432 push [esp+iCh+var_4]
00381436 call ds:0ff_383024
0038143C mov esi, eax

ebx
00381440 jnz short loc_38144D

vy

G'£8144

00381440 push
0038144E push
0038144F push
00381450 call
00381450

00381456 test
00381458 jnz
00381458

0038144D loc_38144D:

ebx
ebx

esi
ds:off_383038

eax, eax

short 1oc_381467 ;

5 [144](1517674)-> advapi32_StartServiceA

5 [144](151767°5)-> loc_381467

[i=]

What kind of information does “egg’ collect?

2. Callgraph

3. Branch information

0x00381843

15178

15180

0x00381481

15182

Callgraph

(made with Graphviz)

00381416 push
00381417 call
00381417

eax
ds:o0ff_383028

i
5 [144](1517672)-> advapi32_CreateServiceA

FFRI
\

Branch Info
(with IDA Pro)

00381410 mov esi, eax

0038141F cmp esi, ebx

00381421 jnz short 10c_38144D

00381421 5 [144]1(15176°3)-> loc_38144D
Ll

N

10381423 call

¢s:01T_383090

00381429 cmp eax, 431h
0038142E jnz short loc_381442
[
BN

00381430 push edi
00381431 push
00381432 push
00381436 call
0038143C mov
0038143E cmp esi, ebx

00381440 jnz short loc_38144D

ebp
[esp+iCh+var_4]
ds:0ff_383024
esi, eax

vy

G'£8144

00381440 push
0038144E push
0038144F push
00381450 call
00381450

00381456 test
00381458 jnz
00381458

0038144D loc_38144D:

ebx
ebx

esi
ds:off_383038

5 [144](1517674)-> advapi32_StartServiceA
eax, eax

short 1oc_381467 ;
5 [144]1(15176°S)-> loc_381467

[i=]

What kind of information does “egg’ collect?

2. Callgraph

3. Branch information

0x00381843 15178

0x00381481

Callgraph

(made with Graphviz)

00381416 push
00381417 call
00381417
00381410 mov
0038141F cmp
00381421 jnz

eax
ds:o0ff_383028

esi, eax
esi, ebx
short 10c_38144D

i
5 [144](1517672)-> advapi32_CreateServiceA

FFRI
\

Branch Info
(with IDA Pro)

00381421 5 [144]1(15176°3)-> loc_38144D
F Ll
N Ll
10381423 call ds:0f1_383090
00381429 cmp eax, 431h
0038142E jnz short loc_381442

00381430 push edi
00381431 push
00381432 push
00381436 call
0038143C mov
0038143E cmp esi,

ebx
00381440 jnz short loc_38144D

ebp
[esp+iCh+var_4]
ds:0ff_383024
esi, eax

vy

0038144

00381440 push
0038144E push
0038144F push
00381450 call
00381450

00381456 test
00381458 jnz
00381458

0038144D loc_38144D:

ebx
ebx

esi
ds:off_383038

e3ax,

short 1oc_381467 ;

eax

5 [144](1517674)-> advapi32_StartServiceA

5 [144](151767°5)-> loc_381467

[i=]

What kind of information does “egg’ collect?

2. Callgraph

3. Branch information

00381416 push
00381417 call
00381417
00381410 mov
0038141F cmp
00381421 jnz

eax
ds:o0ff_383028

esi, eax
esi, ebx
short 10c_38144D

i
5 [144](1517672)-> advapi32_CreateServiceA

FFRI
\

Branch Info
(with IDA Pro)

0x00381843 15178

0x00381481

00381421 5 [144]1(15176°3)-> loc_38144D
F Ll
N Ll
10381423 call ds:0f1_383090
00381429 cmp eax, 431h
0038142E jnz short loc_381442

00381430 push edi
00381431 push
00381432 push
00381436 call
0038143C mov
0038143E cmp esi, ebx

00381440 jnz short loc_38144D

ebp
[esp+iCh+var_4]
ds:0ff_383024
esi, eax

Callgraph

(made with Graphviz)

vy

0038144

00381440 push
0038144E push
0038144F push
00381450 call
00381450

00381456 test
00381458 jnz
00381458

0038144D loc_38144D:

ebx
ebx

esi
ds:off_383038

eax, eax

short 1oc_381467 ;

5 [144](1517674)-> advapi32_StartServiceA

5 [144](151767°5)-> loc_381467

[i=]

FFRI
\

Demonstration of basic functions(movie)

Analyzing sample.exe.

Sample.exe overwrites original beep driver (beep.sys).

Then restarts beep service to install this driver in the kernel.

“egg” analyzes sample.exe and the modified beep driver.

FFRI
\

Implementation of the fine—grained code analysis

Based on the page protection and the trap flag.
Published by the paper “Stealth Breakpoints”.

We can run analysis codes for each instruction execution.

It can applies to both a kernel and user modes, and even
works transparently in the user mode code.

Stealth Breakpoints
http://www.acsac.org/2005/abstracts/72.html

What is taint tracing? \
It can automatically trace suspicious elements.

A suspicious element is marked as tainted.

A taint automatically influences new elements that used
tainted elements.

Some suspicious sources _
> Tainted \

/I

NEW
Tainted

NOT
Tainted

FFRI
\

An overview of taint tracing approach of “egg”

egg takes a novel approach to implement the taint tracing.

In case of egg, “Elements” are Files, Virtual memory and
Threads.

1. Specify . | 2. Map in Mem 3. Execute
g — | Taint > Taint Taint
Memory Thread

Fo~—

4. \Write to File |/4 Write to Mem

A

Taint
Memory

FFRI
\

An overview of taint tracing approach of “egg”

egg takes a novel approach to implement the taint tracing.

In case of egg, “Elements” are Files, Virtual memory and
Threads.

2. Map in Mem 3. Execute
> Taint Taint
Memory |_ Thread

Taint
Memory

(4. \Write to File |/4 Write to Mem

FFRI
\

Implementation of taint tracing in ring—0

Using API
PsSetlLoadlmageNotifyRoutine

1. Speci 3. Execute
> Taint
Thread
|/4. Write to Mem

FFRI
\

Implementation of taint tracing in ring—0

Using the page protection
(eXecute Disable bit)

1. Specify aint 2. Map in Mem 3. Execute
“!!!’ > Taint
Thread
4. Write to File /
Taint |

Memory

4. Write to Mem

FFRI
\

Implementation of taint tracing in ring—0

Qing the File system filter driver

—

1. Specify . | 2. Map in Mem 3. Execute
g > | o Taint Taint
Memory |_ Thread

Taint |/4 Write to Mem

Memory

FFRI
\

Implementation of taint tracing in ring—0

Using the page protection
(Write/Read bit)
1. Specify . | 2. Map in 3. Execute
g — | Taint Taint Taint
Memory Thread

4. Write to File

FFR{
Implementation of taint tracing in ring—0

For thread safety, egg hooks thread switching function
(called SwapContext).

Therefore egg can notice a thread switching.

Running on processor Waiting Waiting

Thread Thread Thread
(not tainted) (tainted) (not tainted)

Process
Memory

Process memory has not been modified yet.

Implementation of taint tracing in ring—0

FFRI
\

When taint thread becomes active, egg changes every
process memory to read—only.

Process
Memory

Running on processor Waiting Waiting

Thread Thread Thread
(tainted) (not tainted) (not tainted)

Currently, process memory is read-only.

If a thread tries to write somewhere,
the processor causes an exception.
egg catches this exception as taint event.

FFRI
\

Implementation of taint tracing in ring—0

When taint thread becomes inactive, egg restores every page

protection.
Running on processor Waiting Waiting
Thread Thread Thread
(not tainted) (not tainted) (not tainted)
Process
Memory

Process memory protection is restored.

FFR{
Tracking the cross—process memory operation

To trace cross—process memory operation, egg hooks
context switching function (called KiSwapProcess).

Therefore egg can notice cross—process memory operation.

Running on processor

Thread
(tainted)

malware.exe

explorer.exe

Process
Memory

Process
Memory

Read-only Have not been changed

Tracking the cross—process memory operation

FFRI
\

When taint thread is running on other process memory, its
process memory will be changed to read—only.

malware.exe

Process
Memory

Restored

Running on processor

Thread
(tainted)

explorer.exe

Process
Memory

I
Read-only

egg can trace Cross-process
memory operation.
(e.g. WriteProcessMemory)

FFR

|
Demonstration of the taint tracing function(movie) \

The sample is the thread injection code.

Sample malware called “injector.exe” injects to notepad.exe
with VirtualAllocEx, WriteProcessMemory and
CreateRemoteThread.

Injected thread calls AllocConsole and WriteConsole in
infinite loop.

egg will trace the injected thread.

FFRI
\

Problem of same privilege

egg has limitation against kernel mode code.

— egg is visible and breakable from kernel mode malware.

This limitation is result of trade off for avoiding detection by
the VM detection.

FFRI
\

Conclusion
| Typeofsystem __________legg | Traditional __[Innovative |
Getting useful information Good Insufficient Good
Analyzing a kernel mode code Better Insufficient Good
Analyzing a spreading malware. Good Insufficient Good
Not affected by VM detection techniques Good Good Insufficient

We can save time by using egg.

In the future, I will try to improve its stability and usability.

o FIFRI
\

Fourteenfortvy Research Institute. Inc.

http://www.fourteenforty.jp

