
Liar! Macs have
no viruses!

-[OS X Kernel Rootkits]-

§  Don't take me too seriously, I fuzz the Human brain!
§  The capitalist "pig" degrees: Economics & MBA.
§  Worked for the evil banking system!
§  Security Researcher at COSEINC.
§  "Famous" blogger.
§  Wannabe rootkits book writer.
§  Love a secondary curvy road and a 911.

Who Am I

Prologue

§  OS X Kernel rootkits.
§  Ideas to improve them.
§  Sample applications.
§  Raise awareness and interest in this area.

Today's subject

Prologue

§  Reaching to uid=0 is your problem!
§  The same with startup and persistency aka APT.
§  Should be easier to find the necessary bugs.
§  Less research = Less audits = More bugs.
§  Main target is Mountain Lion.
§  Also works with Mavericks (tested with DP1).

Assumptions
(the economist’s dirty secret that makes everything possible)

Prologue

§  OS X rootkits are a rare "species".
§  Interesting hardware rootkits (Dino's Vitriol and

Snare's EFI) but NO full code available L.
§  Commercial rootkits: Crisis from Hacking Team and

maybe FinFisher (iOS yes, OS X never saw).
§  Crisis is particularly bad.
§  Not many detection tools available.

Current state of the “art”

Simple Ideas

Simple Ideas

§  Many interesting kernel symbols are not exported.
§  Some are available in Unsupported & Private KPIs.
§  Not acceptable for stable rootkits.
§  Solving kernel symbols from a kernel extension is

possible since Lion.
§  Not in Snow Leopard and previous versions.

Problem #1

Simple Ideas

§  __LINKEDIT segment contains the symbol info.
§  Zeroed up to Snow Leopard.
§  OS.X/Crisis solves the symbols in userland and

sends them to the kernel rootkit.

Simple Ideas

§  One easy solution is to read the kernel image
from disk and process its symbols.

§  The kernel does this every time we start a new
process.

§  Possible to implement with stable KPI functions.
§  Kernel ASLR slide is easy to obtain in this

scenario.

Simple Ideas

Simple Ideas

§  Virtual File System – VFS.
§  Read and write any file using VFS functions.
§  Using only KPI symbols.
§  Recipe for success:
q  Vnode.
q  VFS context.
q Data buffer.
q UIO structure/buffer.

Idea #1

Simple Ideas

q How to obtain the vnode information.
§  vnode_lookup(const char* path, int flags,

vnode_t *vpp, vfs_context_t ctx).
§  Converts a path into a vnode.

Pay attention to
that NULL!

Simple Ideas

§  Apple takes care of the ctx for us!

Still works in
Mavericks DP1!

Simple Ideas

q Data buffer.
§  Statically allocated.
§  Dynamically, using one of the many kernel

functions:
§  kalloc, kmem_alloc, OSMalloc, IOMalloc, MALLOC,

_MALLOC.

§  __LINKEDIT size is around 1Mb.

Simple Ideas

q UIO buffer.
§  Use uio_create and uio_addiov.
§  Both are available in BSD KPI.

Simple Ideas

§  Recipe for success:
þ vnode of /mach_kernel.
þ VFS context.
þ Data buffer.
þ UIO structure/buffer.
§  We can finally read the kernel from disk…

Simple Ideas

§  Reading from the filesystem:
§  VNOP_READ(vnode_t vp, struct io* uio, int ioflag,

vfs_context_t ctx).
§  “Call down to a filesystem to read file data”.
§  Once again Apple takes care of the vfs context.
§  If call was successful the buffer will contain

data.
§  To write use VNOP_WRITE.

Simple Ideas

§  To solve the symbols we just need to read the
Mach-O header and extract some information:
§ __TEXT segment address (to find KASLR).
§ __LINKEDIT segment offset and size.
§ Symbols and strings tables offset and size

from LC_SYMTAB command.

Simple Ideas

§  Read __LINKEDIT into a buffer (~1Mb).
§  Process it and solve immediately all the symbols

we (might) need.
§  Or just solve symbols when required to obfuscate

things a little.
§  Don't forget that KASLR slide must be added to

the retrieved values.

Simple Ideas

§  To compute the KASLR value find out the base
address of the running kernel.

§  Using IDT or a kernel function address and then
lookup Mach-O magic value backwards.

§  Compute the __TEXT address difference to the
value we extracted from disk image.

§  Or use some other method you might have.

Simple Ideas

§  We are able to read and write any file.
§  For now the kernel is the interesting target.
§  We can solve any available symbol - function or

variable, exported or not in KPIs.
§  Compatible with all OS X versions.

Checkpoint #1

Simple Ideas

§  Many interesting functions & variables are static.
§  Cross references not available (IDA spoils us!).
§  Hex search is not very reliable.
§  Internal kernel structures fields offsets, such as

proc and task.

Problem #2

Simple Ideas

§  Integrate a disassembler in the rootkit!
§  Tested with diStorm, my personal favorite.
§  Works great.
§  Be careful with some inline data.
§  One second to disassemble the kernel.
§  In a single straightforward sweep.

Idea #2

Earth calling
ESET, hello?

Simple Ideas

§  Ability to search for static functions, variables,
and structure fields.

§  We still depend on patterns.
§  These are more common between all versions.
§  Possibility to hook calls by searching references

and modifying the offsets.

Checkpoint #2

Simple Ideas

§  We can have full control of the kernel.
§  Everything can be dynamic.
§  Stable and future proof rootkits.

Simple Ideas

§  Can Apple close the VFS door?
§  That would probably break legit products that use

them.
§  We still have the disassembler(s).
§  Kernel anti-disassembly ? J
§  Imagination is the limit!

LSD helps, they
say!

Simple Ideas

§  Executing userland code.
§  Playing with DTrace’s syscall provider & Volatility.
§  Zombie rootkits.
§  Additional applications in the SyScan slides and

Phrack paper (whenever it comes out).

Practical applications

Dude, where’s
the paper?

Userland cmds

§  It can be useful to execute userland binaries from
the rootkit or inject code into them.

§  Many different possibilities exist:
§  Modify binary (at disk or runtime).
§  Inject shellcode.
§  Inject a library.
§  Etc…

§  This particular one uses last year's Boubou trick.
§  Not the most efficient but fun.

Kernel calls
userland, hello?

Userland cmds

§  Kill a process controlled by launchd.
§  Intercept the respawn.
§  Inject a dynamic library into its Mach-O header.
§  Dyld will load the library, solve symbols and

execute the library's constructor.
§  Do whatever we want!

Idea!

Userland cmds

q Write to userland memory from kernel.
q Kernel location to intercept & execute the injection.
q  A modified Mach-O header.
q Dyld must read modified header.
q  A dynamic library.
q  Luck (always required!).

Requirements

I play Russian
roulette!

Userland cmds

q Write to userland memory from kernel.
§  Easiest solution is to use vm_map_write_user.
§  vm_map_write_user(vm_map_t map, void

*src_p, vm_map_address_t dst_addr,
vm_size_t size);

§  "Copy out data from a kernel space into space in
the destination map. The space must already
exist in the destination map."

Userland cmds

q Write to userland memory from kernel.
§  Map parameter is the map field from the task

structure.
§  proc and task structures are linked via void *.
§  Use proc_find(int pid) to retrieve proc struct.
§  Or proc_task(proc_t p).
§  Check kern_proc.c from XNU source.

Userland cmds

þ Write to userland memory from kernel.
§  The remaining parameters are buffer to write

from, destination address, and buffer size.

Userland cmds

q Kernel location to intercept & execute the injection.
§  We need to find a kernel function within the new

process creation workflow.
§  Hook it with our function responsible for modifying

the target's header.
§  We are looking for a specific process so new proc

structure fields must be already set.
§  Vnode information can also be used.

Userland cmds

Userland cmds

§  There's a function called proc_resetregister.
§  Located near the end so almost everything is

ready to pass control to dyld.
§  Easy to rip and hook!
§  Have a look at Hydra (github.com/gdbinit/hydra).

Purrfect!!!

Userland cmds

þ Modified Mach-O header.
§  Very easy to do.
§  Check last year's HiTCON slides.
§  OS.X/Boubou source code

(https://github.com/gdbinit/osx_boubou).

Userland cmds

Userland cmds

þ Dyld must read modified header.
§  Adding a new library to the header is equivalent

to DYLD_INSERT_LIBRARIES (LD_PRELOAD).
§  Kernel passes control to dyld.
§  Then dyld to target's entrypoint.
§  Dyld needs to read the Mach-O header.
§  If header is modified before dyld's control we can

inject a library (or change entrypoint and so on).

Userland cmds

þ A dynamic library.
§  Use Xcode's template.
§  Add a constructor.

§  Fork, exec, system, thread(s), whatever you need.
§  Don't forget to cleanup library traces! I never leave

footprints!

Userland cmds

§  Problems with this technique:
§  Requires library at disk (can be unpacked from

rootkit and removed if we want).
§  Needs to kill a process (but can be used to infect

specific processes when started).
§  Proc structure is not stable (get fields offset

using the disassembler).

Hide & seek

§  OS X is “instrumentation” rich:
§ DTrace.
§  FSEvents.
§  kauth.
§  kdebug.
§  TrustedBSD.
§  Auditing.
§ Socket filters.

Hide & seek

§  Let’s focus on DTrace's syscall provider.
§  Nemo presented DTrace rootkits at Infiltrate.
§  Siliconblade with Volatility "detects" them.
§  But Volatility is vulnerable to an old trick.

Get the f*ck
outta here!

Hide & seek

§  Traces every syscall entry and exit.
§  mach_trap is the mach equivalent provider.
§  DTrace's philosophy of zero probe effect when

disabled.
§  Activation of this provider is equivalent to sysent

hooking.
§  Modifies the sy_call pointer inside sysent struct.

Hide & seek

Hide & seek

§  Not very useful to detect sysent hooking.
§  fbt provider is better for detection (check SyScan

slides).
§  Nemo's DTrace rootkit uses syscall provider.
§  Can be detected by dumping the sysent table and

verifying if _dtrace_systrace_syscall is present.
§  False positives? Low probability.

Hide & seek

Hide & seek

Hide & seek

" Nemo's presentation has shown again that
known tools can be used for subverting a
system and won't be easy to spot by a novice
investigator, but then again nothing can hide
in memory ;) "

@ http://siliconblade.blogspot.com/2013/04/hunting-d-trace-rootkits-with.html

Hide & seek

§  It's rather easy to find what you know.
§  How about what you don't know?
§  Sysent hooking is easily detected by memory

forensics (assuming you can get memory dump!).
§  But fails at old sysent shadowing trick.
§  Check http://siliconblade.blogspot.pt/2013/07/

offensive-volatility-messing-with-os-x.html I don't know
anything!

Hide & seek

No hooking!
Not fun L

Hide & seek

Sysent hooking,
meh!

Hide & seek

Shadow sysent.
U can't see me!

Hide & seek

§  Volatility plugin can easily find sysent table
modification(s).

§  But fails to detect a shadow sysent table.
§  Nothing new, extremely easy to implement with

the kernel disassembler!
§  Hindsight is always easy!

Hide & seek

§  How to do it in a few steps:
§  Find sysent table address via IDT and bruteforce,

or some other technique.
§  Warning: Mavericks has a modified sysent table.
§  Use the address to find location in __got section.
§  Disassemble kernel and find references to __got

address.

Hide & seek

§  Allocate memory and copy original sysent table.
§  Find space inside kernel to add a pointer

(modifying __got is too noisy!).
§  Install pointer to our sysent copy.
§  Modify found references to __got pointer to our

new pointer.
§  Hook syscalls in the shadow table.

Hide & seek

§  Many instrumentation features available!
§  Do not forget them if you are the evil rootkit

coder.
§  Helpful for a quick assessment if you are the

potential victim.
§  Be very careful with tool's assumptions.

Checkpoint

Zombies

Otterz?
Zombies?

Zombies

§  Create a kernel memory leak.
§  Copy rootkit code to that area.
§  Fix permissions and symbols offsets.
§  That’s easy, we have a disassembler!
§  Redirect execution to the zombie area.
§  Return KERN_FAILURE to rootkit's start function.

Idea!

Zombies

þ Create a kernel memory leak.
§  Using one of the dynamic memory functions.
§  kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,

_MALLOC/_FREE, IOMalloc/IOFree.
§  No garbage collection mechanism.
§  Find rootkit’s Mach-O header and compute its

size (__TEXT + __DATA segments).

Zombies

q Fix symbols offsets.
§  Kexts have no symbol stubs as most userland

binaries.
§  Symbols are solved when kext is loaded.
§  RIP addressing is used (offset from kext to

kernel).
§  When we copy to the zombie area those offsets

are wrong.

Zombies

q Fix symbols offsets.
§  We can have a table with all external symbols or

dynamically find them (read rootkit from disk).
§  Lookup each kernel symbol address.
§  Disassemble the original rootkit code address

and find the references to the original symbol.
§  Find CALL and JMP and check if target is the

symbol.

Zombies

þ  Fix symbols offsets.
§  Not useful to disassemble the zombie area because

offsets are wrong.
§  Compute the distance to start address from CALLs in

original and add it to the zombie start address.
§  Now we have the location of each symbol inside the

zombie and can fix the offset back to kernel symbol.

Zombies

q Redirect execution to zombie.
§  We can’t simply jump to new code because

rootkit start function must return a value!
§  Hijack some function and have it execute a

zombie start function.
§  Or just start a new kernel thread with

kernel_thread_start.

Zombies

þ Redirect execution to zombie.
§  To find the zombie start function use the same

trick as symbols:
§  Compute the difference to the start in the original

rootkit.
§  Add it to the start of zombie and we get the

correct pointer.

Zombies

þ Return KERN_FAILURE.
§  Original kext must return a value.
§  If we return KERN_SUCCESS, kext will be loaded

and we need to hide or unload it.
§  If we return KERN_FAILURE, kext will fail to load

and OS X will cleanup it for us.
§  Not a problem because zombie is already

resident.

Zombies

§  No need to hide from kextstat.
§  No kext related structures.
§  Harder to find (easier now because I'm telling you).
§  Wipe out zombie Mach-O header and there’s only

code/data in kernel memory.
§  It’s fun!

Advantages

I eat zombies
for breakfast!

Zombies

Demo
(Dear Spooks: all code will be made public,

don't break my room! #kthxbay)

Fire the
drones!!!

Zombies

Zombies

Zombies

Problems

q Unstable internal structures!
§  Proc structure is one of those.
§  We just need a few fields.
§  Find offsets by disassembling stable functions.
§  Possible, you just need to spend some time

grep'ing around XNU source code and IDA.

Problems

q Memory forensics.
§  A worthy rootkit enemy.
§  But with its own flaws.
§  In particular the acquisition process.
§  Some assumptions are weak.
§  Needs more features.

Problems

§  And so many others.
§  It's a cat & mouse game.
§  Any mistake can be costly.
§  When creating a rootkit, reduce the number of

assumptions you have.
§  Defenders face the unknown.
§  Very hard game – abuse their assumptions.

Conclusions

Conclusions

§  Improving the quality of OS X kernel rootkits is
very easy.

§  Stable and future-proof requires more work.
§  Prevention and detection tools must be

researched & developed.
§  Kernel is sexy but don't forget userland.
§  OS.X/Crisis userland rootkit is powerful!
§  Easier to hide in userland from memory forensics.

Conclusions

§  Attackers have better incentives to be creative.
§  Defense will always lag and suffer from

information asymmetry.
§  Economics didn't solve this problem and I doubt

InfoSec will (because it's connected to
Economics aka MONEY).

§  Always question assumptions. This presentation
has a few ;-).

Pratice makes
perfection!

nemo, noar, snare, saure, od, emptydir, korn, g0sh,
spico and all other put.as friends, everyone at
COSEINC, thegrugq, diff-t, #osxre, Gil Dabah from
diStorm, A. Ionescu, Igor from Hex-Rays, NSA &
friends, and you for spending time of your life
listening to me J.

Greets

We are hiring!

§  Software Engineers.
§  Based in Singapore.
§  2 years experience.
§  You know C and Python better than me!
§  Can communicate in English.
§  $80000NT monthly salary.
§  Housing provided.
§  2 Years contract.

http://reverse.put.as
http://github.com/gdbinit

reverser@put.as
pedro@coseinc.com

@osxreverser
#osxre @ irc.freenode.net

And iloverootkits.com maybe soon!

Contacts

End! At last…

Have fun!

A day full of possibilities!

Let's go exploring!

