Liar! Macs have
no viruses!

-[0S X Kernel Rootkits |-

n———

1M

S

—
p—
-
Solid Security.Verified.

Who Am |

Don't take me too seriously, | fuzz the Human brain!
The capitalist "pig" degrees: Economics & MBA.
Worked for the evil banking system!

Security Researcher at COSEINC.

"Famous” blogger.
Wannabe rootkits book writer.

Love a secondary curvy road and a 911.

loday's subject

= (S X Kernel rootkits.

= |deas to improve them.

= Sample applications.

= Raise awareness and interest in this area.

Assumptions

(the economist's dirty secret that makes everything possible)

Reaching to uid=0 is your problem!

The same with startup and persistency aka APT.
Should be easier to find the necessary bugs.

Less research = Less audits = More bugs.

Main target is Mountain Lion.

Also works with Mavericks (tested with DP1). ﬁ

Current state of the “art”

= (S Xrootkits are a rare "species’.

= |nteresting hardware rootkits (Dino's Vitriol and
Snare's EFI) but NO full code available ®.

= Commercial rootkits: Crisis from Hacking Team and
maybe FinFisher (i0S yes, 0S X never saw).

= Crisis is particularly bad.
= Not many detection tools available.

&

" IT'LL SiMPLIFY
| ALoT oF TASKS
| You NEVER HAD |

Inti Herald Tribune

¥,

=

Simple Ideas

Problem #1

= Many interesting kernel symbols are not exported.
= Some are available in Unsupported & Private KPIs.
= Not acceptable for stable rootkits.

= Solving kernel symbols from a kernel extension is
possible since Lion.

= Not in Snow Leopard and previous versions.

= LINKEDIT segment contains the symbol info.

= /eroed up to Snow Leopard.

= 0S.X/Crisis solves the symbols in userland and
sends them to the kernel rootkit.

__text:022QC4EB loc_E4EB:

__text:022QE4EB 89 3C 24 mov
__text:0000E4EE (7 44 24 @4s mov
__text:0029E4F6 E8 3C 85 FF+ call
__text:002QE4FB (7 85 68 FF+ mov
__text:0220E5@5 89 85 6C FF+ mov
__text:0220E5@B 8B 86 8D 95+ mov
__text:@222E511 8D 9D 68 FF+ lea
__text:022QE517 89 5C 24 @8 mov
__text:022QE51B 89 @4 24 mov
__text:@Q2QE51E (7 44 24 @4s mov
__text:0020E526 E8 @F AE 93+ call

; CODE XREF: _solveKernelSymbolsForKext+(C71j
[esp], edi ; mmap'ed kernel start address
dword ptr [esp+4], @DD2C36DEh ; symbol to solve
_findSymbolInFatBinary
[ebp+var_98], @DD2C36D6h
[ebp+var_94], eax ; kmod address
eax, ds:(pfcpu_filedescriptor - QE@67h)[esi]
ebx, [ebp+var_98]
[esp+8], ebx
[esp], eax ; int
dword ptr [esp+4], 8@7AEEBFh ; send solved symbol reguest
_loctl ; Ox8@7aeebf

¥

=

Simple Ideas

= One easy solution is to read the kernel image
from disk and process its symbols.

= The kernel does
Orocess.

= Possible to imp

= Kernel ASLR slic
scenario.

this every time we start a new

ement with stable KPI functions.
e IS easy to obtain In this

_—

MANBE I CAN GET A
POINT FOR ORIGINALITY,
N— h

(72
O
v
=
=
Q.
E
wn

A NOUN THAT LOST
ITS AMATEUR STAIUS.

¥

=

Simple Ideas

ldea #1

= Virtual File System — VFS.

= Read and write any file using VFS functions.
= Using only KPI symbols.

= Recipe for success:

 Vnode.

J VFS context.

J Data buffer.

 UIO structure/buffer.

] How to obtain the vnhode information.

= vnode_lookup(const char* path, int flags,

vnode t *v

= Converts a

0p, vfs_context t ctx).

nath into a vnode.

vnode t kernel node = NULLVP;
int error = vnode lookup("/mach kernel", 0, 8kernel vnode, NULL);

Pay attention to
that NULL!
@)

= Apple takes care of the ctx for us!

errno_t
vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)

struct nameidata nd;
int error;
u int32 t ndflags = 0;

if (ctx == NULL) { /* XXX technically an error */
ctx = vfs_context _current(); // <- thank you! :-)

4C 8D 25 DC 72 52 00 lea ri2, stack_chk_guard
49 8B 0oC 24 mov rex, [ra2]
48 89 4D D8 mov [rbp+var 28], rcx
48 85 CO test rax, rax Still warks in
75 05 jnz short 10C_FFFFFF80003DB336 Mavericks DP1!
E8 BA BD 01 00 call _vfs_context_current

'

A

loc_FFFFFF80003DB3B6: ; CODE XREF: _vnode_lookup+2F1j
89 DA mov edx, ebx

1 Data buffer.
= Statically allocated.

= Dynamically, using one of the many kernel
functions:

= kalloc, kmem_alloc, 0SMalloc, [OMalloc, MALLOC,
~ MALLOC.

= [INKEDIT size Is around 1Mb.

1 UIO buffer.
= Use uio_create and uio_addiov.
= Both are available in BSD KPI.

char buffer[PAGE SIZE 64];

uio t uio = NULL;

uio = uio create(1, 0, UIO SYSSPACE, UIO READ);

int error = uio addiov(uio, CAST USER ADDR T(buffer), PAGE SIZE 64);

&

= Recipe for success:
vl vnode of /mach_kernel.

vl VES context.

vl Data buffer.

vl UIO structure/buffer.

= We can finally read the kernel from disk...

¥

=

Simple Ideas

= Reading from the filesystem:

= VNOP_ READ(vnode t vp, struct io* uio, int ioflag,
vfs_context t ctx).

= “Call down to a filesystem to read file data’".
= Once again Apple takes care of the vfs context.

= |f call was successful the buffer will contain
data.

= To write use VNOP_WRITE.

¥

=

Simple Ideas

= To solve the symbols we just need to read the
Mach-0 header and extract some information:

= TEXT segment address (to find KASLR).
= |LINKEDIT segment offset and size.

= Symbols and strings tables offset and size
from LC_SYMTAB command.

¥

= Read LINKEDIT into a buffer (~1Mb).

= Process it and solve immediately all the symbols
we (might) need.

Simple Ideas

= Orjust solve symbols when required to obfuscate
things a little.

= Don't forget that KASLR slide must be added to
the retrieved values.

¥

=

Simple Ideas

» To compute the KASLR value find out the base
address of the running kernel.

= Using IDT or a kernel function address and then
lookup Mach-0 magic value backwards.

= Compute the TEXT address difference to the
value we extracted from disk image.

= (Jr use some other method you might have.

¥,

=

Simple Ideas

Checkpoint #1

= We are able to read and write any file.
= For now the kernel is the interesting target.

= We can solve any available symbol - function or
variable, exported or not in KPIs.

= Compatible with all 0S X versions.

¥,

=

Simple Ideas

Problem #2

= Many interesting functions & variables are static.
= Cross references not available (IDA spoils us!).
= Hex search Is not very reliable.

= |nternal kernel structures fields offsets, such as
oroc and task.

¥

v Simple Ideas

|dea #2

" |ntegrate a disassembler in the rootkit!

= Tested with diStorm, my personal favorite.
= Works great.

= Be careful with some inline data.

= Jne second to disassemble the kernel.

Earth calling

" |n a single straightforward sweep.

S

¥,

=

Simple Ideas

Checkpoint #2

= Ability to search for static functions, variables,
and structure fields.

= We still depend on patterns.
= [hese are more common between all versions.

= Possibility to hook calls by searching references
and modifying the offsets.

= We can have full control of the kernel.

= Everything can be dynamic.
= Stable and future proof rootkits.

/* system call table */

* 1 *
/* Before 0S X Mavericks */ /% 0S X Mavericks */
struct sysent {

{t16 1 sy_narg; struct sysent {

int8 t sy_Tesv; sy call t *sy call;
int8 t sy_flag;; sy munge t *sy arg munge32;
sy call t *sy call; Sy_munge_t *sy arg_munge64;

sy munge t *sy arg munge32; int32_t sy_return_type;
sy munge t *sy arg mungeb64; int16_t Sy_nharg,
int32_t sy _return type; uint16_t sy arg bytes;

uinti6_t sy _arg bytes; }
&

/* system call table */

= Can Apple close the VFS door?

= That would probably break legit products that use
them.

= We still have the disassembler(s).
= Kernel anti-disassembly ? ©

= |magination is the limit!

LSD helps, they
say!

Q
Practical applications

= Executing userland code.

Simple Ideas

= Playing with DTrace’s syscall provider & Volatility.
= /ombie rootkits.

= Additional applications in the SyScan slides and
Phrack paper (whenever it comes out).

't can be useful to execute userland binaries from
the rootkit or inject code into them.

Many different possibilities exist:

= Modify binary (at disk or runtime).

= |nject shellcode.

= |nject a library.

= Etc...

This particular one uses last year's Boubou trick.
Not the most efficient but fun.

Userland cmds

Kernel calls
userland, hello?

S

Userland cmds

ldea!

il a process controlled by launchd.
ntercept the respawn.
nject a dynamic library into its Mach-0 header.

Jyld will load the library, solve symbols and
execute the library's constructor.

Do whatever we want!

Userland cmds

Requirements

1 Write to userland memory from kernel.

J Kernel location to intercept & execute the injection.
1 A modified Mach-0 header.

 Dyld must read modified header.

1 A dynamic library.

1 Luck (always required!).

Userland cmds

1 Write to userland memory from kernel.

= Easiest solution is to use vin_map_write_user.

= vm_map_write_user(vm_map_t map, void
*src_p, vm_map address tdst addr,
vm_size t size);

= "Copy out data from a kernel space into space in

the destination map. The space must already
exist in the destination map.”

Userland cmds

1 Write to userland memory from kernel.

= Map parameter Is the map field from the task
structure.

= proc and task structures are linked via void *.

= Use proc_find(int pid) to retrieve proc struct.

= Orproc_task(proc_tp).
= (Check kern proc.c from XNU source.

ﬁ Userland cmds

vl Write to userland memory from kernel.

= The remaining parameters are buffer to write
from, destination address, and buffer size.

struct proc *p = proc_find(PID);

struct task *task = (struct task*)(p->task);

kern return t kr = 0;

vm_prot t new protection = VM _PROT WRITE | VM PROT READ;

char *fname = "nemo_and snare rule!";

// modify memory permissions

kr = mach_vm_protect(task->map, 0x1000, len, FALSE, new protection);
kr = vm_map write user(task->map, fname, 0x1000, strlen(fname)+1);
proc_rele(p);

Userland cmds

1 Kernel location to intercept & execute the injection.

= We need to find a kernel function within the new
process creation workflow.

= Hook it with our function responsible for modifying
the target's header.

= We are looking for a specific process so new proc
structure fields must be already set.

= Vnode information can also be used.

execve() -> _ mac_execve()

v
exec_activate_image()

v
Read file

.----> exec_mach_imgact() -> run dyld -> target entry point
| I

load_machfile()

v
parse _machfile() [maps the load commands into memory]

v
load dylinker() [sets image entrypoint to dyld]

Userland cmds

= There's a function called proc_resetregister.

= | ocated near the end so almost everything Is
ready to pass control to dyld.

= Fasy torip and hook!
= Have a look at Hydra (github.com/gdbinit/hydra).

void proc resetregister(proc t p)

{
proc_lock(p);

p->p 1flag &= ~P LREGISTER; « ————— Poriea
proc_unlock(p);

}

S

Userland cmds

vl Modified Mach-0 header.
= Very easy to do.
= Check last year's HITCON slides.

= 0S.X/Boubou source code
(https://github.com/gdbinit/osx_boubou).

-
~

HEADER

Load Commands

HEADER

Load Commands

| I
| I
L
| Command 1 | | | | Command 1 |
{ Command 2 I : : I Command 2 I
| || | | I
| . || | | . |
I | | | | I
j Command n [| | | Command n |
H—-—->= I Command n+1 I
|—>] ‘
| >|
Data | —>| Data
. - >| . .
| | Section 1 | |——>| | | Section |
| 1| | | | | 1] I
| | Section 2 | | | | | Section |
! ! l : ! !
| | Section 1 | | | | | Section |
| 2 | | | | | 2 | I
|| Section 2 | : : | | Section 2 |
| !

| ——————————— —— —— —— —— —— —— — — — — 8

<- Fix this struct
struct mach_heade
uint32_t ncmds;
uint32_t sizeof

};

<- add new command

r{
<— add +1

cmds; <— size of new cmd

here

struct dylib_command {

uint32_t
uint32_t
}struct dylib

cmd;
cmdsize;
dylib;

Userland cmds

vl Dyld must read modified header.

= Adding a new library to the header Is equivalent
to DYLD INSERT LIBRARIES (LD PRELOAD).

= Kernel passes control to dyla.
= Then dyld to target's entrypoint.
* Dyld needs to read the Mach-0 header.

= |f header Is modified before dyld's control we can
inject a library (or change entrypoint and so on).

S

Userland cmds

vl A dynamic library.
= Use Xcode's template.
= Add a constructor.

extern void init(void) _ attribute ((constructor));
void init(void)

{
// do evil stuff here

}
= Fork, exec, system, thread(s), whatever you need.

= Don't forget to cleanup library traces! o

S

Userland cmds

Problems with this technique:

Requires library at disk (can be unpacked from
rootkit and removed if we want).

Needs to kill a process (but can be used to infect
specific processes when started).

Proc structure is not stable (get fields offset
using the disassembler).

= JS X is "Instrumentation” rich:
= DTrace.
= FSEvents.
= kauth.

= kdebug.

= TrustedBSD.

= Auditing.

= Socket filters.

Let's focus on DTrace’s syscall provider.

Nemo presented DTrace rootkits at Infiltrate.

Silicon
But Vo

olade with Volatility "detects” them.

atility Is vulnerable to an old trick.

» Traces every syscall entry and exit.

* mach_trap Is the mach equivalent provider.

= DTrace’s philosophy of zero probe effect when
disabled.

= Activation of this provider is equivalent to sysent
hooking.

= Modifies the sy call pointer inside sysent struct.

&

Before:
gdb$ print *(struct sysent*)(oxffffff8025255840+5*sizeof(struct sysent))
$12 = {

sy narg = 0x3,

sy _resv = 0x0,
sy flags = 0x0,

‘sy_call = oxffffff8024cfc210, <- open syscall, sysent[5]
sy arg munge32 = Oxffffff8024fe34f0,
Sy _arg_mungeé64 = 0,
sy return_type = 0Ox1,

sy arg bytes = Oxc

dtrace systrace syscall is located at address OxFFFFFF8024FDC630.

After enabling a 'syscall::open:entry' probe:
gdb$ print *(struct sysent*)(oxffffff8025255840+5*sizeof(struct sysent))
$13 = {

sy _narg = 0x3,
sy resv = Ox0,
sy flags = 0x0,
-sy_call = oxffffff8024fdc630, <- now points to dtrace systrace syscall
sy arg munge32 = Ooxffffff8024fe34fo,
sy _arg_mungeé4 = 0,
sy return_type = 0Ox1,

sy arg bytes = Oxc

= Not very useful to detect sysent hooking.

= fbt provider is better for detection (check SyScan
slides).

= Nemo's DTrace rootkit uses syscall provider.

= Can be detected by dumping the sysent table and
verifying If _dtrace systrace syscall s present.

= False positives? Low probability.

&

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-12e6095b.vmem
Volatile Systems Volatility Framework 2.3 alpha

Table Name

SyscallTable
SyscallTable
SyscallTable
SyscallTable

SyscallTable
SyscallTable
SyscallTable
SyscallTable
SyscallTable

Index

OxFFFFF80085755F0 _
OxFFFFF8008555430 _

Address

oxffffff8008559730

oxffffff80082fbc20

oxffffff80082fc8co
oxffffff80085755f0

oxFfFfFf8008575630 _

OxFFFFFFB008556660 _
OxFFFFF80085755F0 _

Symbol

“unlink
_nosys

Captain Hindsight

With his sidekicks, Shoulda, Coulda, and Woulda

" Nemo's presentation has shown again that
known tools can be used for subverting a
system and won't be easy to spot by a novice

iInvestigator, but then again nothing can hide
in memory ;) "

@ http://siliconblade.blogspot.com/2013/04/hunting-d-trace-rootkits-with.html

&

= |t's rather easy to find what you know.

= How about what you don't know?

= Sysent hooking is easily detected by memory
forensics (assuming you can get memory dump!).

= But falls at old sysent shac

= Check http://siliconblade.b

offensive-volatility-messing-with-os-x.html

owing trick.
ogspot.pt/2013/07/

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-no\ hooking.vmem
Volatile Systems Volatility Framework 2.3 alpha

(ens)
SyscallTable 339 oxffffff800854a490 fstaté4
SyscallTable 340 oxffffff80082fd620 lstat64
SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 oxffffff80082fd6co lstat64 extended
()% ROOXEA3A47(0 PXTended
SyscallTable 344 oxffffff8008300c20 _getd1rentr1e564
UX S0U08 JCoU
SyscallTable 346 oxffffff8008219e80 fstatf564
SyscallTable 347 Oxffffff80082fa2a0 getfsstat6s
SyscallTable 348 oxffffff80082fa7c0 __ pthread chdir
SyscallTable 349 oxffffff80082fa640 _ pthread fchdir
SyscallTable 350 Ooxffffff8008535ch0 _audit
?)f?a)lllTable 351 oxffffff8008535e20 auditon

python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-hooking1.vmem
Volatile Systems Volatility Framework 2.3 alpha

(ens)

SyscallTable 339 oxffffff800854a490 fstat64
SyscallTable 340 oxffffff80082fd620 lstat64
SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 0xffffff80082fd6c0 _1stat6s extended
SyscallTable 346 0xffffff80082f9e80 _fstatf564
SyscallTable 347 oxffffff80082fa2a0 getfsstat64
SyscallTable 348 oxffffff80082fa7c0 _ pthread chdir
SyscallTable 349 oxffffff80082fa640 pthread fchdir
SyscallTable 350 Ooxffffff8008535ch0 audit
SyscallTable 351 oxffffff8008535€20 _auditon

(e) Sysent hooking,
meh!

“

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-hooking2.vmem
Volatile Systems Volatility Framework 2.3 alpha

(...)

SyscallTable 339 oxffffff800854a490 _fstat64

SyscallTable 340 oxffffff80082fd620 lstaté4

SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 0xffffff80082fd6c0 lstat64 extended
SyscallTable 344 0xffffff8008300c20 getdlrentrle564
yscalllable 450X C i

SyscallTable 346 0xffffff80082f9€80 fstatf564

SyscallTable 347 oxffffff80082fa2a0 getfsstat6s

SyscallTable 348 oxffffff80082fa7c0 pthread chdir
SyscallTable 349 oxffffff80082fa640 pthread fchdir
SyscallTable 350 Oxffffff8008535cb0 audit s
SyscallTable 351 Oxffffff8008535e20 auditon
(e0s) .

Kzii?

= Volatility plugin can easily find sysent table
modification(s).

= But falls to detect a shadow sysent table.

= Nothing new, extremely easy to implement with
the kernel disassembler!

= Hindsight is always easy!

= How to do it in a few steps:

» Find sysent table address via |IDT and bruteforce,
or some other technique.

= Warning: Mavericks has a modified sysent table.
= Use the address to find location in __ got section.

= Disassemble kernel and find references to got
address.

&

= Allocate memory and copy original sysent table.

» Find space Inside kernel to add a pointer
(modifying _ got is too noisy!).
= |nstall pointer to our sysent copy.

= Modify found references to __ got pointer to our
new pointer.

= Hook syscalls in the shadow table.

&

Checkpoint

= Many instrumentation features available!

= [Jo not forget them if you are the evil rootkit
coder.

= Helpful for a quick assessment If you are the
potential victim.

= Be very careful with tool's assumptions.

&

Otterz?
Zombies?

ldea!

Create a kernel memory leak.
Copy rootkit code to that area.
Fix permissions and symbols offset:

That's easy, we have a disassemble
Redirect execution to the zombie area.
Return KERN FAILURE to rootkit's start function.

vl Create a kernel memory leak.
= Using one of the dynamic memory functions.

= kalloc, kmem alloc, 0SMalloc, MALLOC/FREE,
MALLOC/ FREE, IOMalloc/IOFree.

= No garbage collection mechanism.

= Find rootkit's Mach-0 header and compute its
size (_ TEXT+ DATA segments).

1 Fix symbols offsets.

= Kexts have no symbol stubs as most userland
binaries.

= Symbols are solved when kext is loaded.

= RIP addressing is used (offset from kext to
kernel).

= When we copy to the zombie area those offsets
are wroneg.

1 Fix symbols offsets.

= We can have a table with all external symbols or
dynamically find them (read rootkit from disk).

= | ookup each kernel symbol address.

= Disassemble the original rootkit code address
and find the references to the original symbol.

* Find CALL and JMP and check if target is the
symbol.

vl Fix symbols offsets.

= Not useful to disassemble the zombie area because
offsets are wrong.

= Compute the distance to start address from CALLs in
original and add it to the zombie start address.

= Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel symbol.

&

] Redirect execution to zombie.

= We can't simply jump to new code because
rootkit start function must return a value!

= Hijack some function and have It execute a
zombie start function.

= (rjust start a new kernel thread with
kernel thread start.

V] Redirect execution to zombie.

= [o find the zombie start function use the same
trick as symbols:

= Compute the difference to the start in the original
rootkit.

= Add it to the start of zombie and we get the
correct pointer.

&

vl Return KERN_FAILURE.
= (riginal kext must return a value.

= |[f we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload It.

= |[f we return KERN _FAILURE, kext will fail to load
and 0S X will cleanup It for us.

= Not a problem because zombie Is already
resident.

&

Advantages

No need to hide from kextstat.

No kext related structures.

Harder to find (easier now because I'm telling you).

Wipe out zombie Mach-0 header and there's only
code/data in kernel memaory.

It's fun!

Demo

(Dear Spooks: all code will be made public,

don't break my room! #kthxbay)

mountain-lion-64:~ reverser$ uname -an

Darwin mountain-lion-64.local 12.3.0 Darwin Kernel Version 12.3.0: Sun Jan

64

mountain-lion-64:~ reverser$ ls /
Applications System bin
Library Users cores
Network Volumes gaumy dev

mountain-lion-64:~ reverser$ sudo sh

etc
home

mach_kernel

7. ssh

mach_kernel new opt
mach_kernel_old private
net sbin

sh-3.2# chown -R root:wheel the_flying circus.kext/; kextload the_flying_circus.kext/
/Users/reverser/the_flying circus.kext failed to load - (libkern/kext) kext (kmod) start/stop routine failed; check the system/kernel logs

for errors or try kextutil(8).

sh-3.2# 1s /

.DS_Store .fseventsd
.DocumentRevisions-V100 .hotfiles.btree
.Spotlight-V1i00 .vol

.Trashes Applications
.VolumeIcon.icns Library

.file Network

sh-3.2# []

System
Users
bin
cores
dev
etc

home
mach_kernel_new
mach_kernel_old
net

opt

private

6 22:37:10 PST 2013; root:xnu-2050.22.13~1/RELEASE_X86_64 x86_

tmp
usr
var

sbin
tmp
usr
var

b~ |

9. ssh 2"

uilt Aug 21 2012 21:49:26

memctl:
memctl:
memctl:
memctl:
memctl:
memctl:
memctl:
memctl:

Opening balloon
Instrumenting bug 151304...
offset 0: 72

offset 1: 16

offset 2: 56

offset 3: 64

offset 4: 76

Timer thread started.

[AppleBluetoothHCIControllerUSBTransport][start] -- completed
[I0BluetoothHCIController][staticBluetoothHCIControllerTransportShowsUp] -- Received Bluetooth Controller regis

ter service notification

Sandbox: sandboxd(105) deny mach-lookup com.apple.coresymbolicationd

**%* [AppleBluetoothHCIControllerUSBTransport][configurePM] -- ERROR -- waited 30 seconds and still did not get
the commandWakeup() notification -- this = oxffffff8006cfe800 ****

Bluetooth: Adaptive Frequency Hopping is not supported.

[I0BluetoothHCIController::setConfigState] calling registerService

[SendHCIRequestFormatted] ### ERROR: [0xOC3F] (Set AFH Host Channel Classification) -- Send request failed (err
= 0x0001 (kBluetoothHCIErrorUnknownHCICommand))

sh-3.2# []

9. ssh "

543 1>

66 0 oxffffff7f818ea000 0xc000 0xc000 com.apple.driver.ApplePolicyControl (3.3.0) <65 64 55 10 9
75431

67 0 oxffffff7f8109a000 0x5000 0x5000 com.apple.Dont_Steal Mac_0S X (7.0.0) <62 7 4 3 1>

68 0 oxffffff7f80ed5000 0xb0o000 0xb0000 com.apple.iokit.IOBluetoothFamily (4.1.3f3) <41 75 4 3 1>

69 0 oxffffff7f80d07000 0x14000 0x14000 com.apple.iokit.IOSurface (86.0.4) <7 5 4 3 1>

70 0 oxffffff7f80a65000 0x7000 0x7000 com.apple.iokit.IOUserEthernet (1.0.0d1) <316 5 4 3 1>

71 2 oxffffff7f81742000 0xf000 0xf000 com.apple.iokit.IOHDAFamily (2.3.7fc4) <5 4 3 1>

72 1 oxffffff7f81755000 0x16000 0x16000 com.apple.driver.AppleHDAController (2.3.7fc4) <71 55 10 6
5431

73 1 oxffffff7f80d1b000 0x4000 0x4000 com.apple.iokit.IOSMBusFamily (1.1) <5 4 3>

74 1 oxffffff7f8168a000 0x11000 0x11000 com.apple.driver.AppleSMBusController (1.0.11d0) <73 10 9 5
4 3>

75 0 oxffffff7f8169b000 0xd00O 0xd000 com.apple.driver.AppleMCCSControl (1.1.11) <74 55 10 9 7 5
43 1>

76 0 oxffffff7f81511000 0x5000 0x5000 com.apple.driver.AppleUpstreamUserClient (3.5.10) <55 10 9
75431

77 2 oxffffff7f811edoo0 0x7000 0x7000 com.apple.kext.0SvKernDSPLib (1.6) <5 4>

78 3 oxffffff7f811f4000 0x3a000 0x32000 com.apple.iokit.IOAudioFamily (1.8.9fc11) <77 5 4 3 1>

79 1 oxffffff7f8176b000 0xc2000 0xc2000 com.apple.driver.DspFunclib (2.3.7fc4) <78 77 6 5 4 3 1>

80 0 oxffffff7f8182do00 0x7d000 0x7d000 com.apple.driver.AppleHDA (2.3.7fc4) <79 78 72 71 64 55 6 5
43 1>

83 1 oxffffff7f80b88000 0x7000 0x7000 com.apple.driver.AppleUSBComposite (5.2.5) <41 4 3 1>

85 0 oxffffff7f80b7f000 0x9000 0x9000 com.apple.iokit.IOQUSBHIDDriver (5.2.5) <41 26 5 4 3 1>

86 1 oxffffff7f811ddooo 0x5000 0x5000 com.apple.kext.triggers (1.0) <7 6 5 4 3 1>

87 0 oxffffff7f811e2000 0x9000 0x9000 com.apple.filesystems.autofs (3.0) <86 7 6 5 4 3 1>

88 0 oxffffff7f819fa000 0x5000 0x5000 com.vmware.kext.vmmemctl (0081.82.01) <7 5 4 3 1>

89 0 oxffffff7f80e99000 0xa0n00 0xa000 com.apple.iokit.IOBluetoothSerialManager (4.1.3f3) <57 7 5
43 1>

90 0 oxffffff7f80eadoo0 0x28000 0x28000 com.apple.iokit.AppleBluetoothHCIControllerUSBTransport (4.
1.3f3) <41 109754 3 1>

91 0 oxffffff7f819ff000 0xa0n00 0xa000 com.vmware.kext.vmhgfs (0081.82.01) <5 4 3 1>
92 0 oxffffff7f8obe2000 0x7000 0x7000 com.apple.driver.AppleUSBMergeNub (5.5.5) <83 41 4 3 1>
93 0 oxffffff7f8122e000 0x5000 0x5000 com.apple.driver.AudioAUUC (1.60) <78 55 10 9 7 5 4 3 1>

sh-3.2# []

y
’
_
.
————

] Unstable internal structures!

= Proc structure 1s one of those.

= We just neec

-ind offsets

a few fields.

oy disassembling stable functions.

P0ssible, you just need to spend some time
orep'ing around XNU source code and IDA.

1 Memory forensics.

= A worthy rootkit enemy.

= But with its own flaws.

= |n particular the acquisition process.

= Some assumptions are weak.
= Needs more features.

= And so many others.
" |[t's a cat & mouse game.

= Any mistake can be costly.

= When creating a rootkit, reduce the number of
assumptions you have.

= Defenders face the unknown.
= Very hard game — abuse their assumptions.

&

Creators Syndicate, Inc. Tubes2@earthlink net
© 2007 Leigh Rubin! www.crealors.com

In his own mind, Jerry quickly mastered the art.

_
JBM
SV

g EQRT
“l OF@
f\eses
i /M ,mwrr,
s\ 84
NG
14

= |[mproving the quality of OS X kernel rootkits is
VEry easy.

= Stable and future-proof requires more work.

= Prevention and detection tools must be
researched & developed.

= Kernel Is sexy but don't forget userlanda.
= 0S.X/Crisis userland rootkit is powerful!
= Easier to hide in userland from memory forensics.

&

Conclusions

= Attackers have better incentives to be creative.

= Defense will always lag and suffer from
iInformation asymmetry.

= EFconomics didn't solve this problem and | doubt
InfoSec will (because it's connected to
Economics aka MONEY).

= Always question assumptions. This presentation
has a few ;-).

Pratice makes
perfection!

S

nemo, noar, snare, saure, od, emptydir, korn, g0sh,
spico and all other put.as friends, everyone at
COSEINC, thegrugq, diff-t, #osxre, Gil Dabah from
diStorm, A. lonescu, lgor from Hex-Rays, NSA &
friends, and you for spending time of your life
istening to me ©.

. ﬁ WOW, THE LAST TWO I HOPE THE TEACHER
LOOK, IT'S ALMOST) HOURS REALLY FLEW BY! DIONT SAY ANYTHING
Il O'CLock ! S M IMPORTANT.

} .

= Software Engineers.

= Based in Singapore.

= 7 years experience.

= You know C and Python better than me!
» Can communicate in English.

= $80000NT monthly salary.

= Housing provided.

= 7 Years contract.

http://reverse.put.as
http://github.com/gdbinit
reverser@put.as
pedro(@coseinc.com

[@osxreverser

osxre (@ Irc.freenode.net

And iloverootkits.com maybe soon!

A day full of possibilities!

TS LIKE HANING A RS
WHITE SHEEY OF PAPER

o

> v v Ry
L & SNOWED

WG T Ve N Y 1

<

<

‘:al

