Discover Flash Player Zero-day
Attacks In The Wild From Big Data

Agenda

Who am |
Background

Discover flash O-day attacks from big set
samples

Vector Length mitigation

About me

Security researcher
APT product developer

Interested in discovering vulnerabilities and
writing exploit.

Focus on Flash and Android recently.

/) TREND

WAR3 & Ping Pong Hobbyist

T A /|

Found CVE-2015-0313 flash 0-day attack

Trend Micro Discovers New Adobe Flash Zero-Day Exploit Used
2 In Malvertisemments

5:17 am (UTC-7) | by Peter Pi (Threats Analyst)

C§ Share | £ reconner JEI R CYPY

Our researchers have discovered a new zero-day exploit in Adobe Flash used in malvertisement attacks. The exploit
affects the most recent version of Adobe Flash, and is now identified as CVE-2015-0313. QOur initial analysis

suggests that this might have heen executed through the use of the Angler Exploit Kit, due to similarities in obfuscation
techniques and infection chains.

According to our data, visitors of the popular site dailymotion.com were redirected to a series of sites that eventually led
to the URL hxxp:Awww retifio.comyskilif. swf, where the exploit itself was hosted. It is important to note that infection
happens autormatically, since advertisements are designed to load once a user visits a site. It is likely that this was not
limited to the Dailymotion website alone, since the infection was triggered from the advertising platform and not the
website content itself. Trend Micro detects this exploit as SWF_EXPLOIT MJST and blocks the URL mentioned above.
The ads from this particular infection chain appear to be down as of this writing.

We have been monitoring this attack since January 14, and saw a spike in the hits to the P related to the malicious
URL around January 27. According to data from the Trend Micro™ Smart Protection Network™ most of the users who
accessed the malicious server related to the attack are from the United States.

CVE-2015-5122 & 5123 from hacked team

Another Zero-Day Vulnerability Arises from
11 Hacking Team Data Leak

12:43 am (UTC-7) |

Hot on the heels of the last zero-«
5119) comes yet another that ma
exploited, it could resultin a crasl
like CVE-2015-5119, it affects all

This is a new vulnerability apart fi
Hacking Team Leak, which were
has since been used in various

The good news: it's still a Proof-o
The bad news: there's no patch fi
as we verified the vulnerability its
vulnerability at 11:40 AM (GMT+£

So how does the vulnerability wo

With our analysis, we discovered
methods TextBlock.createTextLin

The trigger involves the method r
MyClass.prototype.valueOf is ove
TextBlock.recreateTextLine(my_t

We debugged the POC on an X8
function itselfis TryExpl of MyCla

GEE3 <o

W Tweet 157

by Peter Pi (Threats Analyst)

3 67]

W Tweet < 160

New Zero-Day Vulnerability (CVE-2015-5123) in

11 Adobe Flash Emerges from Hacking Team Leak

10:58 pm (UTC-7) | by Peter Pi (Threats Analyst)

After two Adobe Flash player zero-days disclosed in a row from the leaked data of Hacking Team, we discovered
another Adobe Flash Player zero-day (assigned with CVE number, CVE-2015-5123) that surfaced from the said
leak. Adobe has already released a security advisory after we reported the said zero-day. This vulnerability is rated
as critical and can allow an attacker to take control of the affected system once successfully exploited. It affects all
versions of Adobe Flash in Windows, Mac, and Linux.

This vulnerability is the second zero-day vulnerability in Flash to be found in recent days. The first one, identified as
CVE-2015-5122, could also be used to take control of affected machines. This was on top of the first Flash zero-day
attributed to Hacking Team which was disclosed several days ago and was soon integrated into various exploit kits.
A separate Java zero-day (not related to any Hacking Team disclosures) has also been found by Trend Micro
researchers.

Root cause analysis

Based on our analysis, this vulnerability is also of valueOf trick bug. However, compared to the first two reported
Flash zero-day exploits, itinvolves the BitmapData object and not the TextLine and ByteArray.

The vulnerability can be triggered by the following steps:

1. From a new BitmapData object, prepare two Array objects, new two MyClass objects, and assign the
MyClass objectto each Array objects.

2. Once the valueOffunction of MyClass is override, it calls the BitmapData.palette Map with the two Array
objects as parameters. The BitmapData.paletteMap will trigger the valueOf function.

3. Inthe valueOf function, it will call BitmapData.dispose() to dispose the underlying memory of BitmapData
object, thus causing Flash Player to crash.

Found some newly patched flash attack

Freshly Patched Flash Exploit Added to Nuclear Exploit Kit

2

We have detected througt
heen updated to include tt
signs of this malicious aci

This particular vulnerahilit
upgraded the software to-
previous version (16.0.0.3
incident is an excellent rer
frequently by exploit kits,

This exploit, detected as <
an Internet Explarer repair
hxxp ibalinkmediaf joor
hoxpdibalinkmediaf jcor

BLAQUOBQAXBAQDBG!

We believe that this is the
previous Nuclear attacks.

6:58 am (UTC-71 |

Latest Flash Exploit in Angler EK Might Not Really [FEE3 ¢
22 Be CVE-2015-0359

8:59 am (UTC-7) |

We have found an intere

The Angler exploitkitis |
has started targeting CV
is a race condition vulne
workers to trigger. Howe
(UAF) vulnerability relate
and patched vulnerabilit

Execution Flow

Instead of CVE-2015-03

2015-0313:

1. Ashareable £
calling setSh:

. Setthis share
3. Aworkerthre;
calling getShi

of Flash pres¢
calls ByteArra

bv Peter Pi (Threats Analvst

W Tweet < 89

by Peter Pi (Threats Analyst)

Magnitude Exploit Kit Uses Newly Patched Adobe [FEE3- 7|
16 Vulnerability; US, Canada, and UK are Most At W Tweet | 251
Risk

2:42 am (UTC-7) | by Peter Pi (Threats Analyst)

Adobe may have already patched a Flash Player vulnerability last week, but several users—especially those in the
US, Canada, and the UK —are still currently exposed and are at risk of getting infected with CryptoWall 3.0. The
Magnitude Exploit Kitincluded an exploit, detected as SWF_EXPLOIT.MJTE, for the said vulnerability, allowing
attackers to spread crypto-ransomware into their target systems. We first saw signs of this activity yesterday, June
15, through our monitoring of threat intelligence from the Trend Micro™ Smart Protection Network™.

This particular vulnerability, identified as CVE-2015-3105, was fixed as part of Adobe’s regular June Update for
Adobe Flash Player which upgraded the software to version 18.0.0.160. However, many users are still running the
previous version (17.0.0.188), which means that a lot of users are still at risk.

As of this week, these are the top 10 countries most affected by this threat:

United States
Canada

UK

Germany
France
Australia
Italy

Turkey

India
Belgium

DR wN =

©oND

-
=)

My Blog address

e http://blog.trendmicro.com/trendlabs-
security-intelligence/author/peterpi/

* Will publish some Android bugs | found.

Agenda

Who am |
Background

Discover flash O-day attacks from big set
samples

Vector Length mitigation

Flash Year

* Because of browsers’ UAF mitigations and
JAVA pop-up window, Flash Player became
the weakest out of popular targets in PC.

Flash Year

* Finally, we can see that Zero-day attacks’
targets are mostly Flash Player in 2015

> CVE-2015-0310
> CVE-2015-0311
> CVE-2015-0313
> CVE-2015-3043
> CVE-2015-3113
> CVE-2015-5119
> CVE-2015-5122

Flash Year

* Newly patched N-day attacks in Exploit Kits
this year almost are based on Flash Player
vulnerabilities.
> CVE-2014-8439
> CVE-2014-9163 & CVE-2014-9162
> CVE-2015-0336
> CVE-2015-0359
> CVE-2015-3090

Flash Year

* |n this situation, | wanted to disclose Flash O-

day attacks when tried to guess
future perspective in late 2014.

* Disclose newly patched n-day attacks also has
value to users.

Background

* Got tens of millions of suspicious SWFs in our
Hadoop server, and thousands newly added
every day.

* | think this is a good resource to find 0-day
attacks

e So, this topic title’s big data is a trick, and not
related to data mining or machine learning ©

Agenda

Who am |
Background

Discover flash 0-day attacks from big set
samples

Vector Length mitigation

Problem | face

Big set samples to handle.
| need a automation process.

It can achieve very low False Alert rate, fast
processing speed.

Final manual check only needs handle little
Flash samples.

Need a tool

* | need a tool to help me identify a SWF file can
exploit target version of Flash Player.

> This tool must have very low False Alert.
> This tool must have logger for improving automation.
> This tool must can record exploit event when detect.

> This tool must can stop the exploit.

FlashExploitDetector(FED)

FED is an |IE BHO written by C++

Dynamic hook Flash OCX when Flash Player
loaded to IE tab process.

Hook IE event to get current URL name.

Write log to file when detect, it will save the
time and the SWF/URL name.

Infinite loop when detect exploit, waiting for
automation process to kill IE and continue
next SWF file.

Automation Process

Simple Python code.
Register FED BHO using regsvr32.exe
Every time load a HTML contains SWF in IE

FED will hook Flash Player OCX to detect
exploit

Kill IE processes to load next SWF file in new I|E

When finished all SWF files, parse log file and
get the detected SWF files.

Key Point

* How to achieve extremely low False Alert
rate? There are match points in the flow of
exploit.

1. Match vulnerability triggers? This means one vulnerability
one rule, no use here, discard

2. Match Vector Heap Spray? This is good, but FA is still high
for this special problem, for example old samples will trigger
vector heap spray also. And 0-day may no need heap

spray(CVE-2015-5119)

3. Match ROP and Shellcode execution stage? It is like EMET.
But EMET is hard to automation, can’t record the file name, O-
day may bypass EMET. And implement your EMET with a logger
is big effort.

Key Point

In 2014 and 2015, Flash Exploits are all use corrupt
Vector to achieve arbitrary read and write memory.

By achieved arbitrary read and write, exploits can
bypass DEP, ALSR, CFG and even EMET.

The corrupt Vector need huge length for reading and
writing big memory address space of the process.

May be | can match this generic point.

Key Point
* Simplified Exploit Flow

VectorAllocate(); VectorSpray();

triggerVulnerability();

findCorruptVector();

buildRopAndShellCode();

execRopAndShellCode();

Key Point
ldeally

vectorAllocate();

triggerVulnerability();

findCorruptVector();

buildRopAndShellCode

execRopAndShellCode();

How to implement?

 Because before AS3 methods been called, it
will be JITed, So | hook the JIT flow of AVM2

* When hit the hook point, | can check the AS3
Vector status change between previous hit

and this hit.

e So, this is likely check whether previous AS3
method has corrupt an AS3 Vector

How to implement it?

 Background knowledge
> AVM2 will JIT AS3 methods for performance.

> AVM2’s verifier will check security when doing JIT

> After JIT, the emitted machine code address will be saved in
a struct named MethodInfo.

> MethodInfo also saves a method id, uses method id we can
get AS3 method name.

How to implement it?

* Key function

> In AVM2(https://github.com/adobe-flash/avmplus),
BaseExecMagr::verifylit is the function to verify and emit code.

r::verifydit(MethodInfo* m, MethodSignaturep ms,
1 *toplevel, AbcEnv* abc_env, OSR *osr)
i
#ifdef VMCFG_HALFMOON
if (verifyOptimizelit(m, ms, toplevel, abc_env, osr))
return; 1alfmoon jit worked.

m->set_abc_exceptions(core->gc, NULL);

#endif
CodegenLIR jit(m, ms, toplevel, osr, &noise);
PERFM_NTPROF_BEGIN("verify & IR gen");
verifyCommon(m, ms, toplevel, abc_env, &jit);
PERFM_NTPROF_END("verify & IR gen");
GprMethodProc code = jit.emitMD();
if (code) {
setldit(m, code);
} else if (config.jitordie) {
jit.~CodegenLIR(); // Explicit cleanup since destructor won't run otherwise.
Exception® e = new (core->GetGC())

Exception(core, core->newStringlatinl("JIT failed")->atom());

How to implement it?

e After hooked the JIT flow, we have chance to

check the vector status in our JIT_HOOK
function

* This means we can check vector has been

corrupted or not after previous AS3 methods
has been executed.

How to implement?

* So, Practically

vectorAllocate();

triggerVulnerability();

findCorruptVector(); 79 JIT_HOOK(); = CheckVectorLen();

buildRopAndShellCode

execRopAndShellCode();

How to check vector length?

* Hook Vector Creating

1. Flash Player has 4 types AS3 Vector object.

2. Vector.<int>, Vector.<uint>, Vector.<Number> and
Vector.<Object>.

3. | hook Vector.<int> and Vector.<uint> object create
function.

4. In AVMplus source code, we can see the create function is
a temp|ate fiinrtinn Moanc that thare ara A inctances in flash

template<class 0BJ>

t)ir]zalp\/ ;fA* ypedVectorClass<0BJ>: :newVector(uint32_t length, bool fixed)
1
OBJ* v = (0BJ*)0BJ::create(gc(), ivtable(), prototypePtr());
v->m_vecClass = this;
if (length > @)
v->set_length(length);
v->m_fixed = fixed;
return v;

}

How to check vector length?

* Check Vector length

> When there is a vector object created, | will save the vector
object address.

> vector_obj_addr + 0x18 is the data list which save vector
data.

> First 4 bytes of data list is the vector length.
> So, poi(poi(vector_obj addr + 0x18)) is vector length

template<class STORAGE, uint32_t slop>

struct ListData

-

1
uint32_ len; // Invariant: Must *never* exceed kListMaxLength
MMgc::GC* _gc;
STORAGE entries[1]; // Lying: Really holds capacity()

// add an empty, inlined ctor to avoid spurious warnings in MSV(C208@3
REALLY_INLINE explicit ListData() {}

How to implement?

* So, Practically

vectorAllocate(); > SaveVectorObj();

triggerVulnerability();

findCorruptVector(); 79 JIT_HOOK(); = CheckVectorLen();

buildRopAndShellCode

execRopAndShellCode();

Hook Version

e Hook Version

> Some sample check Flash Player version, if version
is too high or too low, it will terminate execution.

> So | change Flash Player version string in memory

> For example, change WIN 18,0,0,160 to WIN
16,0,0,160

> Just search WIN x,0,0,x in OCX image memory

How to Hook Flash OCX load?

Need to hook Flash OCX when it being loaded
first time.

Like Windbg’s module load event
lash OCX in IE is a COM component.

Hook COM component create in IE, check
CLSID of Flash OCX

How to Hook Flash OCX load?

Hook CoGetClassObject function in urlmon.dll
AT hook

n Hook CoGetClassObject function, use
sEqualCLSID(rclsid, CLSID Flash) to identify
Flash component is being loaded.

Find Flash OCX module base address and
module size, search binary sequence to hook
JIT, hook vector create, hook version

OK, Just Run it

* DEMO
* CVE-2015-5119

Manual Check

* FED finally gives me little samples for manual
checking.

* | need to debug this samples to confirm it is an
0-day or for getting root cause of the 0-day.

Debugging Hard Point

* No symbol of Flash Player.

e All AS3 methods are JITed. Address is
dynamic.

* Flash player has script execution time out.

DbgFlashVul

So | wrote a tool to help debug.

A windbg extension named DbgFlashVul
written in C++.

It can trace AS3 method.

It can set break point based on AS3 method
name.

DbgFlashVul

* lhelp

0:008> 'help
Set Jit Code breakpoint steps:|

1> U=se |SetBaseAddress <flashplayer base addrees=> to set base, default is 0x10000000
2> Use |SetBpForJitCode <AS3 method name> to set breakpoint

AS3 method name style in flash plaver internal i= like this:

1> class member method: [package: :.class/method]., example: a_pack::b _class/c_method
2> class constructor: [package::class], example: a_pack::b_class
3> class static method: [package: :class$/method]. example: a_pack::b_class$/c_static_method
4> i1f package name is empty then no 'package::' prefix
Trace Jit Method:

1> !EnableTraceJit <0 or 1>, enablesdi=sable trace jit method call

DbgFlashVul

| EnableTracelit 1

0:008> !SetBaseAddress 05b30000

0:008> !EnableTraceJit 1

Trace Jit method call is enable!

*%% ERROR: Symbol file could not be found. Defaulted to export symbols
0:008> g

Call [Function$-/createEmptyFunction]

Call [Object$/_dontEnumPrototype]

Call [Object$/_init]

Call [flash.geom: :Rectangle]

Call [flash.display: :Stage]

Call [flash.display: :DisplayObjectContainer]
Call [flash.display::InteractiveObjectVector.<flash.display: : :Stage3D>]
Call [flash.display: :DisplayObject]

Call [flash.events: :EventDispatcher]

Call [test]

Call [flash.display: :Sprite]

Call [test-/launch]

Call [test/Starting]

Call [test/prepareshaderjob]

Call [flash.display: :BitmapDatal]

Call [flash.display: :Shader]

Call [test$/to_Byte_ Arrav]

Call [flash.utils: :ByteArrav]

Call [flash.display: :Shader-set byteCode]
Call [flash.display: :ShaderDatal]

Call [flash.display: :ShaderParameter]

Call [flash.display: :ShaderInput]

Call [flash.display: :ShaderJobs]

Call [test/prepareVector]

DbgFlashVul

* ISetBpForlitCode

0:008> !SetBaseAddress 05aa0000

0:008> !EnableTracedJit 1

Trace Jit method call is enable!

%*%% ERROR: Symbol file could not be found. Defaulted to export symbols for C:
0:008> !SetBpForJitCode test/prepareshaderjob

0:008> g

Call [Function$-/createEmptyFunction]

Call [Object$/_dontEnumPrototype]

Call [Object$/_init]

Call [flash.geom: :Rectangle]

Call [flash.display: :Stage]

Call [flash.display: :DisplayObjectContainer]

Call [flash.display::InteractiveObjectVector.<flash.display: :Stage3D>]
Call [flash.display: :DisplayObject]

Call [flash.events: :EventDispatcher]

Call [test]

Call [flash.display: :Sprite]

Call [test-/launch]

Call [test/Starting]

Call [test-/prepareshaderjob]

BreakPoint at [test/prepareshaderjob]

eax=072252c8 ebx=071e9100 ecx=020bfS5cc ed=x=00000000 e=si=071d3bb0 edi=06clal20

eip=072252c8 esp=020bf564 ebp=020b£f580 iopl=0 nv up 21 pl nz na pe nc
ce=001b ===0023 ds=0023 es=0023 f==003b gs=0000 efl=00040206
<Unloaded_ovy.dll>+0=x72252c7:

072252c8 55 push ebp

0:008> |

A real example : CVE-2015-3090

* Used by most exploit kits.
* Vulnerability can be simplified like this:

private var myShaderjob:ShaderJob = null;
this.myShaderjob = new ShaderJob(this.myShader);

this.myShaderjob.width = 0;
this.myShaderjob.start();
this.myShaderjob.width = 606;

* When changing ShaderJob width asynchronously,
it will cause memory overwrite.

A real example : CVE-2015-3090

* The exploit flow can be simplified like this:

prepareshaderjob();
prepareVector(); //vector spray
attacking(); // trigger vulnerability to overwrite vector length
if ('findCorruptVector()) {
return (false);
};
buildRopAndShellcode()
exec();

A real example : CVE-2015-3090

* For example, we want to get the ROP gagdets
and shellcode used by this exploit.

* Uses DbgFlashVul can easily do this.

A real example : CVE-2015-3090

* Almost every flash exploit using corrupt vector
will have two AS3 functions, like
read _memory and write_memory.

 The two function use corrupt vector to read
and write arbitrary memory.

* So, we can use DbgFlashVul to break the
execution on write_ memory. Exploit uses this
function to construct ROP chain and
shellcode.

A real example : CVE-2015-3090

* Steps:

> Set break point at write_memory

> After break, get the address of “corruptVector[index] = value”, the
assembly is like “mov dword ptr [edx+eax*4+8], ecx”

> Set break point on the address.
> When break, every ecx is a part of ROP chain and shellcode

A real example : CVE-2015-3090

0:008> ISetBaseAddress 038f0000

0:008> !SetBpForlitCode test/write_memory

0:008> g

BreakPoint at [test/write_memory]

eax=05072424 ebx=05039100 ecx=020bf4b0 edx=00000002 esi=05023b08 edi=05023b08
eip=05072424 esp=020bf464 ebp=020bf480 iopl=0 nv up ei pl nz na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00040206
<Unloaded_oy.dlI>+0x5072423:

05072424 55 push ebp

0:008> p

0:008> p

eax=00089352 ebx=05039100 ecx=03bcbeb6 edx=0510e2c0 esi=05023b08 edi=05023b08
eip=05072553 esp=020bf428 ebp=020bf460 iopl=0 nv up ei ng nz na po cy

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00040283
<Unloaded_oy.dlI>+0x5072552:

05072553 894¢8208 mov dword ptr [edx+eax*4+8],ecx ds:0023:05333010=00000000
0:008> bu 05072553

0:008> g

Breakpoint 4 hit

€ax=0008937b ebx=05039100 ecx=03b66ea0 edx=0510e2c0 esi=05023a78 edi=04a6a020
eip=05072553 esp=020bf548 ebp=020bf580 iopl=0 nv up ei ng nz na pe cy

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00040287
<Unloaded_oy.dllI>+0x5072552:

05072553 894¢8208 mov dword ptr [edx+eax*4+8],ecx ds:0023:053330b4=00000000
0:008> u ecx

Flash32 17 0 0 134!DIllUnregisterServer+0x92fe4:

03b66eal 94 xchg eax,esp // stack pivot

03b66eal c3 ret

How to implement it?

* Get MethodInfo:: getMethodName address by
pinary searching

* Hook BaseExecMgr::verifylit like FED

* In Hook function:

> Get emitted code address and MethodInfo object

> Call MethodInfo:: getMethodName with MethodInfo
object(ecx)

> Get AS3 method name from eax
> Save AS3 method name and code address

How to implement it?

void BaseExecMgr::verifylit (...) {

jump hook_funck

e 4 Void hook_func (...) {

name = method_info->getMethodName ();

address = code_address;

Map[name] = address ;

jump verifylit

DbgFlashVul can do other things

* Help to write flash player exploit

* Help to verify template SWF is correct or not
when do fuzzing

* Help to dump embedded SWF by setting break
point at LoadBytes

Agenda

Who am |
Background

Discover flash O-day attacks from big set
samples

Vector Length mitigation

Vector exploit mitigation

Chris Evans & -
scarybeasts -m

Project Zero blog: we collaborated with
Adobe to land Vector.<uint> exploit
hardening into the latest Flash builds:
goo.gl/DyWwBal

O E5EF

- e
107 63 A e®[Rwrid = El

Vector exploit mitigation

* Vector length check

> add a length XOR cookie in vector buffer object

| length | cookie | gc relate | data |

0:008> dd 07484000

07454000
07484010
07484020
07484030
07484040
07454050
07484060
07484070

D0000fff |afd44999d
42424242 434

067b3000

4343 44444444
00000000 0O00OODOOOD
00000000 OOO0OOOOO
00000000 OOO0OODOOO
00000000 000O0DOOD
00000000 OOO0OOOOO
00000000 OOO0OODOOO

00000000
oooooo0o
00000000
00000000
oooooo0o
0oo0o0000

41414141
Ry
00000000
oooooo0o
00000000
00000000
oooooo0o
0oo0o0000

> compare when using length, (length * seed) == cookie

07498aed
07498aef
07498af5
07498af7?
07498af9
07498afc
07498b02

8bl7
8b3588987=06
8bda

33de

8b7704
Sbbd40ffffff
3bde

edx
esi,
ebx,
ebx,
es1

edi,

.dword ptr [edi]

dword ptr ds:[67E9888h]
edx
esi

,dword ptr [edi+d]

dwqrd ptr [ebp-0C0Oh]

L ES1

Vector exploit mitigation
e Vector length check bypass

> need a strong info leak bug to read both length and cookie
to calculate the seed

> seed = (length * cookie)

Vector exploit mitigation

* Vector buffer object isolated

> allocate vector object in system heap not in flash gc heap

> makes vector buffer memory hard to occupy the freed
memory, mitigate the exploit of UAF bugs

> makes heap buffer overflow bugs hard to overwrite vector
buffer object.

Vector exploit mitigation

* Vector buffer object isolated bypass

> need to heap spray many vector objects to some address

> need a overwrite bug to overwrite a heap sprayed address

Conclusion

The mitigation makes vector length based
exploit hard.

This mitigation doesn’t decrease the number
of vulnerabilities of Flash Player.

The mitigation can bypass but need more
good bugs

Some one may find replacement for vector

Reference

* “Smashing The Heap With Vector,” Haifei Li
 “Inside AVM,” Haifei Li

* Google Project zero,
http://googleprojectzero.blogspot.tw/
2015/07/significant-flash-exploit-
mitigations 16.html|

Special Thanks To

e @LambdaTea

> Implemented FED together with me

Thank you!

