
The Terminator to Android

Hardening Services

Yueqian Zhang, Xiapu Luo, Haoyang Yin

Department of Computing

The Hong Kong Polytechnic University

1

2

Source: Trend Micro

Percentage of top 10 apps in each category which have repacked version:
•100% of the apps of Widgets, Media & Video, etc.
•90% of the apps of Business, Music & Audio, etc.
•…

3

Outline

Background

DexHunter

Analysis of major products

Related work

5

Outline

Background

DexHunter

Analysis of major products

Related work

6

Dex File

Java source code -> Java class
-> dex

Java class: each file contains
one class

dex: one file contains all classes

Reorganize constant pools in
each class file into shared and
type-specific constant pools

7

Dex File

The executable of an App.

The header contains the length
 and the offset for each section.

class_defs section contains
 class_def_items, each of which
describes a class.

8

class_def_item

A class_def_item points to a
class_data_item.

A class_data_item contains the
data of a class.

Each method is described by an
encoded_method.

An encoded_method points to
a code_item.

A code_item contains the

 instructions of a method. 9

OAT File

It is generated while an app is installed or a jar file is loaded.

/frameworks/base/services/java/com/android/server/pm/Packa
geManagerService.java
Constructor method  scanDirLI ()
scanPackageLI()performDexOptLI()mInstaller.dexopt()

It is an ELF file.

10

OAT File
Three symbols in dynamic section.

oatdata

oatexec

oatlastword

The original dex file is contained in
the oatdata section.

The compiled native instructions are
contained the oatexec section.

11

Outline

Background

DexHunter
Where to unpack the app?

When to unpack the app?

How to unpack the app?

Analysis of major products

Related work

12

Where to dump dex file?

Four occasions
Opening a Dex file;

Loading a class;

Initializing a class;

Invoking a method;

13

Opening a Dex File

Operations
Open an APK file;

Check whether it has been cached;

If not, extract the dex file from the APK and generate the cached
dex file;

Open the cached dex file.

14

Procedure of Opening a Dex File in ART

15

Loading a Class

Operations
Form a class object from the data;

Verify the legitimacy of access flags and the data;

Populate all fields in the class object;

Deal with its super classes and/or interfaces;

Conduct some other checking.

16

Two Ways of Loading a Classes

Explicit approach
Class.forName(), ClassLoader.loadClass().

Implicit approach
E.g., new operation, accessing static members, etc.

17

Implementation in ART

Explicit
ClassLoader.loadClass DexFile_defineClassNative

Class.forName Class_classForName

Implicit
new operations and so on artAllocObjectFromCode

18

Implementation in ART

19

Implementation in DVM

Explicit
ClassLoader.loadClassDalvik_dalvik_system_DexFile
defineClassNative
Class.forName Dalvik_java_lang_Class_classForName

Implicit
new operations and so on dvmResolveClass

20

Implementation in DVM

21

Class Loaders at Java Level

Three class loaders
BootClassLoader

It is used for loading system classes.

DexClassLoader
It is used for loading external files.

PathClassLoader
It is used by the framework.

22

Inheritance Relationship

23

Parent Delegation Model

Class<?> loadClass(String className, boolean resolve {
 Class<?> clazz = findLoadedClass(className);
 if (clazz == null) {
 clazz = parent.loadClass(className, false);
 }
 if (clazz == null) {
 clazz = findClass(className);
 }
 }
 return clazz;
 }
 24

Parent Delegation Model

Each subclass of ClassLoader implements its own findClass().

Each subclass of ClassLoader inherits loadClass() except
BootClassLoader.

25

Differences between Java and Android

defineClass() in ClassLoader (Android) is not implemented.
Throw UnsupportedOperationException

URLClassLoader in Android also cannot load a class, because

URLClassLoader.findClass() 
URLHandler/URLJarHandler.findClass()

 createClass ()

 ClassLoader.defineclass()

26

A Loaded Class Object in ART

27

A Loaded Class Object in DVM
Object

 Class* klass_

 u4 lock

other data
members

ClassObject

......

 Method*
directMethods

......

InstField* ifields

Method*
virtualMethods

......

......

 StaticField
sfields[n]

 Method

......

u2* insns

......

 ...

 Method

......

u2* insns

......

 Method

......

u2* insns

......

 ...

 Method

......

u2* insns

......

StaticField

JValue value

 ...

......

StaticField

JValue value

......

InstField

int byteOffset

 ...

......

InstField

int byteOffset

......

28

When does Initializing Classes happen?

Before the class object is used;

Before the first static data member is accessed;

Before the first static method is invoked;

Before the first instance is generated;

…

29

Invoking a Method

DVM or ART interpreting mode
Execute the instructions in the code_item.

ART native mode
Execute the native instructions in oatexec section.

30

When to unpack the app?

When the first class of the app is being loaded.

Why?
Before a class is loaded, the content of the class should be available in the
memory;

When the class is initialized, some content in memory may be modified
dynamically;

Just before a method is invoked, its code_item or instructions should be available.

How?

Load and initialize all classes proactively.
 31

How to unpack the apk?

Integrate our tool into Android runtime including DVM and
ART.

Wait for the proper occasion.

Locate the target memory region.

Dump the selected memory.

Correct and reconstruct the dex file.

32

DexHunter

33

Memory

Space

Target

Region

part1

data

DexClassData Parsing each class Locate

Collected

DexClassData

Collected

code_item

class_def_item

classdef

extra

w
rite

Loading & Initializing Classes

Traverse all class_def_items in the dex file.

For each one, we load it with FindClass function (ART) or
dvmDefineClass function (DVM).

Then we initialize it with EnsureInitialized function (ART) or
dvmIsClassInitialized & dvmInitClass functions (DVM).

34

Locating the Target Memory Region

The target memory region contains the dex file.

We use a special string to determine whether the current dex
file is what we want.

35

The Special String in ART

ART: the string “location_” in DexFile objects.

The opened apk file’s path 

 dex_file_location in generated oat file’s header
  dex_file_location_ in OatDexFile objects

  location_ in DexFile objects by function DexFile::Open

36

The Special String in DVM

DVM: the string “fileName” in DexOrJar objects.

The opened apk file path

 fileName in DexOrJar objects by function
 Dalvik_dalvik_system_DexFile_openDexFileNative.

For Dalvik_dalvik_system_DexFile_openDexFile_bytearray,
fileName is always equal to “<memory>”.

37

Extracting the Dex File in Memory

Divide the target memory region
Part 1: the content before the class_defs section

Part 2: the class_defs section

Part 3: the content after the class_defs section

Dump part 1 into a file named part1 and part 3 into a file
named data.

38

Parsing the Content

Parse class_defs section.

Getting each class_data_item from class_def_item.

Read the corresponding content into a DexClassData object.

Notice: some fields in a class_data_item are encoded by LEB128
algorithm.

39

Correcting and Collecting

Why?
Packing services may modify the memory dynamically.

The memory consists of the region containing the dex file and the
method objects (i.e., ArtMethod in ART, Method in DVM) managed
by runtime.

The runtime executes instructions according to the managed
method objects.

40

Correcting and Collecting

We check each:
class_data_off in class_def_item.

accessflag and codeoff in DexMethod of parsed
class_data_item (i.e., DexClassData object).

41

How?

Determine whether the class_data_off in class_def_item exists
in the scope of the dex file.

Copy all class_def_items and write them into a file named
classdef.
Collect the outside class_data_items into a file named extra.

Correct the fields in selected DexClassData object according to
the managed method object.

42

Scenario I

Compare the accessFlags in DexMethod with the access flag
in the managed method object.

Compare the codeoff in DexMethod with the code_item_off
in the managed method object.

If at least one is not equal, we modify the value in the
DexMethod object according to the managed method object
and write the relevant DexClassData into extra file.

43

Scenario II

Check whether code_item_off exists in the scope of the dex
file.

If not, we collect the correct code_item and write it into
extra file.

44

Reconstructing the Dex File

We now have four files: part1, classdef, data, extra.

We combine them as the sequence
 (1) part1
 (2) classdef
 (3) data
 (4) extra

Finally, we obtain a complete dex file.

45

Outline

Background

DexHunter

Analysis of major products

Related work

46

Products under Investigation

360 http://jiagu.360.cn/

Ali http://jaq.alibaba.com/

Baidu http://apkprotect.baidu.com/

Bangcle http://www.bangcle.com/

Tencent http://jiagu.qcloud.com/

ijiami http://www.ijiami.cn/

47

Experiment Setup

48

String List

360 /data/data/XXX/.jiagu/classes.dex

Ali /data/data/XXX/files/libmobisecy1.zip

Baidu /data/data/XXX/.1/classes.jar

Bangcle /data/data/XXX/.cache/classes.jar

Tencent /data/app/XXX-1.apk (/data/app/XXX-2.apk)

ijiami /data/data/XXX/cache/.

XXX stands for its package name.

49

Anti-debugging

All products detect debugger

Anti-ptrace

Anti-JWDP

….

They cannot detect DexHunter.

50

360

Version: 06-21-2015

It encrypts the dex file and saves it in libjiagu.so/libjiagu_art.so.

It releases the data into memory and decrypts it while running.

51

Ali

Version: 21-06-2015

It splits the original dex file into two parts
One is the main body saved in libmobisecy.so

The other one contains the class_data_items and the code_items of
some class_def_items.

It releases both two parts into memory as plain text and
corrects some offset values in the main body while running.

Some annotation_offs are set to incorrect values.

52

Baidu

Version: 21-06-2015

It moves some class_data_items to other places outside the
dex file.

It wipes the magic numbers, checksum and signature in
the header after the dex file has been opened.

53

Baidu

It fills in an empty method just before it is invoked and erases
the content after the method is finished.

We instrument method invocation to dump these methods
which is available only just before invoking.

DoInvoke (ART)
dvmMterp_invokeMethod (DVM)

54

Bangcle

Version: 21-06-2015

It prepares the odex file or oat file in advance.

It encrypts the file and stores it in an external jar file.

It decrypts the data while running

It hooks several functions in libc.so, such as
fwrite, mmap, …

55

ijiami

Version: 21-06-2015

Similar to Bangcle

The string changes every time the app runs.

It releases the decrypted file, which is also encrypted as a jar
file, with different file names each time while they are in the
same directory.

56

Tencent

Version: 25-05-2015

It can protect the methods selected by users.

If a method is selected, it cannot be found in the relevant
class_data_item.

It releases the real class_data_item and adjusts the offset.
The code_item of the selected method is still in the data section.

Some annotation_offs and debug_info_offs are set to
0xFFFFFFFF.

It can only runs in DVM. 57

Outline

Background

DexHunter

Analysis of Major Products

Related work

58

Related work
A. Apvrille and R. Nigam, “Obfuscation in android malware, and how to
fight back,” Virus Bulletin, July 2014.
M. Grassi, “Reverse engineering, pentesting, and hardening of android
apps.” DroidCon, 2014.
T. Strazzere and J. Sawyer, “Android hacker protection level 0,” DefCon,
2014. (android-unpacker, https://github.com/strazzere/android-
unpacker)

ZjDroid, http://blog.csdn.net/androidsecurity/article/details/38121585

Y. Park, “We can still crack you! general unpacking method for android
packer (no root),” Blackhat Asia, 2015.
Y. Shao et al., DexDumper in paper “Towards a Scalable Resource-driven
Approach for Detecting Repackaged Android Applications”, Proc. ACSAC,
2014.

59

61

