
The Terminator to Android

Hardening Services

Yueqian Zhang, Xiapu Luo, Haoyang Yin

Department of Computing

The Hong Kong Polytechnic University

1

2

Source: Trend Micro

Percentage of top 10 apps in each category which have repacked version:
•100% of the apps of Widgets, Media & Video, etc.
•90% of the apps of Business, Music & Audio, etc.
•…

3

Outline

Background

DexHunter

Analysis of major products

Related work

5

Outline

Background

DexHunter

Analysis of major products

Related work

6

Dex File

Java source code -> Java class
-> dex

Java class: each file contains
one class

dex: one file contains all classes

Reorganize constant pools in
each class file into shared and
type-specific constant pools

7

Dex File

The executable of an App.

The header contains the length
 and the offset for each section.

class_defs section contains
 class_def_items, each of which
describes a class.

8

class_def_item

A class_def_item points to a
class_data_item.

A class_data_item contains the
data of a class.

Each method is described by an
encoded_method.

An encoded_method points to
a code_item.

A code_item contains the

 instructions of a method. 9

OAT File

It is generated while an app is installed or a jar file is loaded.

/frameworks/base/services/java/com/android/server/pm/Packa
geManagerService.java
Constructor method scanDirLI ()
scanPackageLI()performDexOptLI()mInstaller.dexopt()

It is an ELF file.

10

OAT File
Three symbols in dynamic section.

oatdata

oatexec

oatlastword

The original dex file is contained in
the oatdata section.

The compiled native instructions are
contained the oatexec section.

11

Outline

Background

DexHunter
Where to unpack the app?

When to unpack the app?

How to unpack the app?

Analysis of major products

Related work

12

Where to dump dex file?

Four occasions
Opening a Dex file;

Loading a class;

Initializing a class;

Invoking a method;

13

Opening a Dex File

Operations
Open an APK file;

Check whether it has been cached;

If not, extract the dex file from the APK and generate the cached
dex file;

Open the cached dex file.

14

Procedure of Opening a Dex File in ART

15

Loading a Class

Operations
Form a class object from the data;

Verify the legitimacy of access flags and the data;

Populate all fields in the class object;

Deal with its super classes and/or interfaces;

Conduct some other checking.

16

Two Ways of Loading a Classes

Explicit approach
Class.forName(), ClassLoader.loadClass().

Implicit approach
E.g., new operation, accessing static members, etc.

17

Implementation in ART

Explicit
ClassLoader.loadClass DexFile_defineClassNative

Class.forName Class_classForName

Implicit
new operations and so on artAllocObjectFromCode

18

Implementation in ART

19

Implementation in DVM

Explicit
ClassLoader.loadClassDalvik_dalvik_system_DexFile
defineClassNative
Class.forName Dalvik_java_lang_Class_classForName

Implicit
new operations and so on dvmResolveClass

20

Implementation in DVM

21

Class Loaders at Java Level

Three class loaders
BootClassLoader

It is used for loading system classes.

DexClassLoader
It is used for loading external files.

PathClassLoader
It is used by the framework.

22

Inheritance Relationship

23

Parent Delegation Model

Class<?> loadClass(String className, boolean resolve {
 Class<?> clazz = findLoadedClass(className);
 if (clazz == null) {
 clazz = parent.loadClass(className, false);
 }
 if (clazz == null) {
 clazz = findClass(className);
 }
 }
 return clazz;
 }
 24

Parent Delegation Model

Each subclass of ClassLoader implements its own findClass().

Each subclass of ClassLoader inherits loadClass() except
BootClassLoader.

25

Differences between Java and Android

defineClass() in ClassLoader (Android) is not implemented.
Throw UnsupportedOperationException

URLClassLoader in Android also cannot load a class, because

URLClassLoader.findClass()
URLHandler/URLJarHandler.findClass()

 createClass ()

 ClassLoader.defineclass()

26

A Loaded Class Object in ART

27

A Loaded Class Object in DVM
Object

 Class* klass_

 u4 lock

other data
members

ClassObject

......

 Method*
directMethods

......

InstField* ifields

Method*
virtualMethods

......

......

 StaticField
sfields[n]

 Method

......

u2* insns

......

 ...

 Method

......

u2* insns

......

 Method

......

u2* insns

......

 ...

 Method

......

u2* insns

......

StaticField

JValue value

 ...

......

StaticField

JValue value

......

InstField

int byteOffset

 ...

......

InstField

int byteOffset

......

28

When does Initializing Classes happen?

Before the class object is used;

Before the first static data member is accessed;

Before the first static method is invoked;

Before the first instance is generated;

…

29

Invoking a Method

DVM or ART interpreting mode
Execute the instructions in the code_item.

ART native mode
Execute the native instructions in oatexec section.

30

When to unpack the app?

When the first class of the app is being loaded.

Why?
Before a class is loaded, the content of the class should be available in the
memory;

When the class is initialized, some content in memory may be modified
dynamically;

Just before a method is invoked, its code_item or instructions should be available.

How?

Load and initialize all classes proactively.
 31

How to unpack the apk?

Integrate our tool into Android runtime including DVM and
ART.

Wait for the proper occasion.

Locate the target memory region.

Dump the selected memory.

Correct and reconstruct the dex file.

32

DexHunter

33

Memory

Space

Target

Region

part1

data

DexClassData Parsing each class Locate

Collected

DexClassData

Collected

code_item

class_def_item

classdef

extra

w
rite

Loading & Initializing Classes

Traverse all class_def_items in the dex file.

For each one, we load it with FindClass function (ART) or
dvmDefineClass function (DVM).

Then we initialize it with EnsureInitialized function (ART) or
dvmIsClassInitialized & dvmInitClass functions (DVM).

34

Locating the Target Memory Region

The target memory region contains the dex file.

We use a special string to determine whether the current dex
file is what we want.

35

The Special String in ART

ART: the string “location_” in DexFile objects.

The opened apk file’s path

 dex_file_location in generated oat file’s header
 dex_file_location_ in OatDexFile objects

 location_ in DexFile objects by function DexFile::Open

36

The Special String in DVM

DVM: the string “fileName” in DexOrJar objects.

The opened apk file path

 fileName in DexOrJar objects by function
 Dalvik_dalvik_system_DexFile_openDexFileNative.

For Dalvik_dalvik_system_DexFile_openDexFile_bytearray,
fileName is always equal to “<memory>”.

37

Extracting the Dex File in Memory

Divide the target memory region
Part 1: the content before the class_defs section

Part 2: the class_defs section

Part 3: the content after the class_defs section

Dump part 1 into a file named part1 and part 3 into a file
named data.

38

Parsing the Content

Parse class_defs section.

Getting each class_data_item from class_def_item.

Read the corresponding content into a DexClassData object.

Notice: some fields in a class_data_item are encoded by LEB128
algorithm.

39

Correcting and Collecting

Why?
Packing services may modify the memory dynamically.

The memory consists of the region containing the dex file and the
method objects (i.e., ArtMethod in ART, Method in DVM) managed
by runtime.

The runtime executes instructions according to the managed
method objects.

40

Correcting and Collecting

We check each:
class_data_off in class_def_item.

accessflag and codeoff in DexMethod of parsed
class_data_item (i.e., DexClassData object).

41

How?

Determine whether the class_data_off in class_def_item exists
in the scope of the dex file.

Copy all class_def_items and write them into a file named
classdef.
Collect the outside class_data_items into a file named extra.

Correct the fields in selected DexClassData object according to
the managed method object.

42

Scenario I

Compare the accessFlags in DexMethod with the access flag
in the managed method object.

Compare the codeoff in DexMethod with the code_item_off
in the managed method object.

If at least one is not equal, we modify the value in the
DexMethod object according to the managed method object
and write the relevant DexClassData into extra file.

43

Scenario II

Check whether code_item_off exists in the scope of the dex
file.

If not, we collect the correct code_item and write it into
extra file.

44

Reconstructing the Dex File

We now have four files: part1, classdef, data, extra.

We combine them as the sequence
 (1) part1
 (2) classdef
 (3) data
 (4) extra

Finally, we obtain a complete dex file.

45

Outline

Background

DexHunter

Analysis of major products

Related work

46

Products under Investigation

360 http://jiagu.360.cn/

Ali http://jaq.alibaba.com/

Baidu http://apkprotect.baidu.com/

Bangcle http://www.bangcle.com/

Tencent http://jiagu.qcloud.com/

ijiami http://www.ijiami.cn/

47

Experiment Setup

48

String List

360 /data/data/XXX/.jiagu/classes.dex

Ali /data/data/XXX/files/libmobisecy1.zip

Baidu /data/data/XXX/.1/classes.jar

Bangcle /data/data/XXX/.cache/classes.jar

Tencent /data/app/XXX-1.apk (/data/app/XXX-2.apk)

ijiami /data/data/XXX/cache/.

XXX stands for its package name.

49

Anti-debugging

All products detect debugger

Anti-ptrace

Anti-JWDP

….

They cannot detect DexHunter.

50

360

Version: 06-21-2015

It encrypts the dex file and saves it in libjiagu.so/libjiagu_art.so.

It releases the data into memory and decrypts it while running.

51

Ali

Version: 21-06-2015

It splits the original dex file into two parts
One is the main body saved in libmobisecy.so

The other one contains the class_data_items and the code_items of
some class_def_items.

It releases both two parts into memory as plain text and
corrects some offset values in the main body while running.

Some annotation_offs are set to incorrect values.

52

Baidu

Version: 21-06-2015

It moves some class_data_items to other places outside the
dex file.

It wipes the magic numbers, checksum and signature in
the header after the dex file has been opened.

53

Baidu

It fills in an empty method just before it is invoked and erases
the content after the method is finished.

We instrument method invocation to dump these methods
which is available only just before invoking.

DoInvoke (ART)
dvmMterp_invokeMethod (DVM)

54

Bangcle

Version: 21-06-2015

It prepares the odex file or oat file in advance.

It encrypts the file and stores it in an external jar file.

It decrypts the data while running

It hooks several functions in libc.so, such as
fwrite, mmap, …

55

ijiami

Version: 21-06-2015

Similar to Bangcle

The string changes every time the app runs.

It releases the decrypted file, which is also encrypted as a jar
file, with different file names each time while they are in the
same directory.

56

Tencent

Version: 25-05-2015

It can protect the methods selected by users.

If a method is selected, it cannot be found in the relevant
class_data_item.

It releases the real class_data_item and adjusts the offset.
The code_item of the selected method is still in the data section.

Some annotation_offs and debug_info_offs are set to
0xFFFFFFFF.

It can only runs in DVM. 57

Outline

Background

DexHunter

Analysis of Major Products

Related work

58

Related work
A. Apvrille and R. Nigam, “Obfuscation in android malware, and how to
fight back,” Virus Bulletin, July 2014.
M. Grassi, “Reverse engineering, pentesting, and hardening of android
apps.” DroidCon, 2014.
T. Strazzere and J. Sawyer, “Android hacker protection level 0,” DefCon,
2014. (android-unpacker, https://github.com/strazzere/android-
unpacker)

ZjDroid, http://blog.csdn.net/androidsecurity/article/details/38121585

Y. Park, “We can still crack you! general unpacking method for android
packer (no root),” Blackhat Asia, 2015.
Y. Shao et al., DexDumper in paper “Towards a Scalable Resource-driven
Approach for Detecting Repackaged Android Applications”, Proc. ACSAC,
2014.

59

61

