
Devil	is	in	the	Details:	Revealing	How	
Linux	Kernel	put_user at	Risk

Edward	Lo	and	Chiachih Wu
C0RE	Team



About	Us

• 羅元琮 (Edward)
–奇虎 360	安全研究開發工程師
–專職內核漏洞挖掘與利用
– “360	超級 ROOT”	技術負責人

• 吳家志 (@chiachih_wu)
–奇虎 360	安全研究開發工程師
– Android/Linux系統安全研究
– C0RE	Team	(c0reteam.org)	創始成員



CVE-2013-2094	(perf_swevent_init)

CVE-2013-2597	(acdb)

In	the	Summer	of	2013	…

CVE-2012-4220	(diag)

CVE-2012-6422	(ExynosAbuse)

Nothing	Beats	HTC	Desire	V	(t328w)!

CVE-2013-6123	(video100)



cvedetails.com



cvedetails.com



CVE-2009-2848



put_user(x,	addr)	on	ARM32

• “addr”	is	checked	by	Hardware	with	
STRT/STRBT/STRHT	Instructions

• When	CONFIG_CPU_USE_DOMAINS	is	not	set,	
put_user()	=	Arbitrary	Memory	Write





In	the	Spring	of	2014	…

What	if	I	do	“grep –r	__put_user *”	?



CAUTION:	__put_user.*()	=	Arbitrary	
Memory	Write





Timetable
Date Event put_user

of	
Upstream	
Kernel	

put_user
of Android	
Kernel

__put_user_*	
w/o	explicit	
address	
validations

2010-11-04 T	macro	and	CONFIG_CPU_USE_DOMAINS	is	
upstreamed	

Vulnerable Vulnerable Vulnerable

2012-01-25 T	macro	is	renamed	to	TUSER Vulnerable Vulnerable Vulnerable

2012-09-09 !CONFIG_CPU_USE_DOMAINS	case	is	fixed Vulnerable Vulnerable

2013-07 put_user	vulnerability	is	identified	by	us	
through	clone()

Vulnerable Vulnerable

2013-09-11 The	incomplete	patch	to	fix	__put_user_*	
vulnerability	is	upstreamed

Vulnerable Vulnerable

2013-11-14 Most	Android	OS	maintainers	start	merging	the	
patch	to	fix	!CONFIG_CPU_USE_DOMAINS	case	
(CAF	disclose	the	details	of	CVE-2013-6282)

Vulnerable

2016-7-31 __put_user_*	vulnerability	is	identified	by	us	
through	code/patches	auditing

Vulnerable



0-day

• We	identify	a	0-day	in	the	ARM/Linux	kernel	
(CVE-2016-3857)



(cont’d)

• Up	to	present	we	have	identified	that	two	
Google	Nexus	phones	are	vulnerable:	Nexus	4,	
and	Nexus	7	(2013	version)

• Besides,	the	Huawei	Honor	4X/6/6	Plus	series,	
Huawei	Ascend	Mate7	series,	and	some	other	
models	of	Huawei,	Lenovo,	Meizu,	OPPO,	
Samsung,	Sony,	Xiaomi devices	are	also	
vulnerable



(cont’d)
Vendor Series Model

Google Nexus Nexus	4	(“mako”),	Nexus	7	(“flo”)

Huawei Ascend	Mate	7 MT7-CL00/TL00/TL10/UL00

Mate	1	/	2 MT1-T00	/	MT1-U06	/	MT2-C00	/	MT2-L01…

Honor	4X CHE2-TL00	/	TL00M		/	TL00H	/UL00

Honor	6 H60-L01/L02/L03/L11/L12/L21

Honor	6	Plus PE-TL10/TL20/UL00

MediaPad X1	7.0

Lenovo A390t/A750e

Meizu MX M032

MX2 M040/045

MX3 M351/353/355/356

OPPO Find	5 X909/X909T

Samsung Galaxy	Trend GT-S7568/SCH-I879

Galaxy	Trend	 II GT-S7572/GT-S7898/SCH-I739

Galaxy	Tab	3	7.0 SM-T211

Galaxy	Core GT-I8262D

Sony Xperia LT26i/26ii/26w

Xiaomi MI	2 2/2A/2C/2S/2SC



(cont’d)

• Now	we	have	a	arbitrary	mem r/w,	then?
• In	Linux	kernel,	most	user	operations	will	
direct	to	the	struct file_operations



(cont’d)

• There	are	several	targets	could	be	our	victim	
(i.e.,	every	user	can	open	and	operate	on	it)
– /dev/ptmx、/dev/binder、/dev/ashmem…



(cont’d)

• With	the	info	we	need,	we	can	modify	any	
member	in	the	fops,	and	trigger
– modify	.fsync in	ptmx_fops to	our	shell	code
– trigger	it	by	open	/dev/ptmx,	and	fsync(fd)
• fsync(fd)→do_fsync()→vfs_fsync()→vfs_fsync_range()
→file->f_op->fsync()…



(cont’d)

• To	sum	up,	if	we	want	to	root	a	phone
– A	vulnerability	to	modify	it to	shell	code	address
– Collect	symbol,	e.g.,	address	of	ptmx_fops
– Overwrite	your	target	function
– Trigger!

• So	I	have	to	collect	1000	phones’	symbol	if	I	
want	to	root	them?	Hmm…
– Time	is	money,	and	we	are	all	lazy	right?



(cont’d)

• With	info	leak,	we	may	be	able	to	write	a	
universal	exploit	without	any	symbol	
knowledge	(CVE-2016-3809)
– Refer	to	http://ppt.cc/yIzVS	for	more	detail

• Whenever	a	socket	is	opened	within	Android,	
it	is	tagged	using	a	netfilter driver	called	
"qtaguid"



(cont’d)

• It	also	exposes	a	control	interface,	let	user	
query	the	current	sockets	and	their	tags

• The	interface	is	a world-accessible file,	
under /proc/net/xt_qtaguid/ctrl



(cont’d)

• Reading	this	file	reveals	the	kernel	virtual	
address	for	each	of	the	sockets



(cont’d)

• So	what	is	this	sock=xxxxxxxxactually?
– Every	open	socket	is	a	struct socket	in	kernel
– Every	socket	has	a	struct sock,	the	network	layer	
representation



(cont’d)



(cont’d)



(cont’d)

• To	sum	up,	with	info	leak	we	can
– Find	sock	address
– Use	vulnerability	to	overwrite	its	proto,	let	it	point	
to	your	fake	struct proto

– Trigger!

/proc/net/xt_qtaguid/ctrl

listed	sock	address

struct sock

struct sock_common {
…
…

struct proto	*skc_prot

fake	struct proto

Fake	function	 pointer
Fake	function	 pointer
Fake	function	 pointer

…

Over	write	proto	
address

Trigger!



(cont’d)

• On	some	ARM32	and	all	ARM64	phones,	PxN
is	enabled
– No	user	mode	shell	code
– But	it’s	legal	if	control	flow	is	still	in	kernel	space	
(ROP)

– Say	if	we	call	a	function	with	at	least	4	parameters



(cont’d)

• In	addition	to	CVE-2016-3857,	we	also	identify	
a	similar	problem	in	Qualcomm’s	debug	
module	named	“msm-buspm”.	This	finding	
had	been	confirmed	as	CVE-2016-2441

• The	debug	module	exports	a	device	node,	
“/dev/msm-buspm-dev”.	Fortunately,	not	
every	user	can	open	/	operate	on	it



(cont’d)



Conclusion

• We	can	always	get	into	the	old	fixes	and	dig	
new	things	out	since	those	fixes	are	written	by	
human	beings	and	they	may	err	as	well

• copy_from_user /	copy_to_user
– __copy_from_user /	__copy_to_user
– __copy_from_user_inatomic /	
__copy_to_user_inatomic

– Maybe	more?



Q	&	A

Edward	Lo	<computernik@gmail.com>
Chiachih Wu	<@chiachih_wu>


