VMM Detection approach
Maniacs — No one can be

believed ©

| 4

Kunio Miyamoto a.k.a wa
wakatono@todo.qgr.]

Katono
0

Twitter ID: wakatono

Today's topic

Background

VMM detection by using Implementation specific
footprint (widely used)

Problem of Implementation specific footprint use

New VMM detection method by using a few
assembly language instructions

Sample Implementation using C and Assembler
VMM detecting apploach in bootstrap process
VMM detection Implementation in bootloader
Conclusion

Background

Copyright by Kunio Miyamoto

3

Motivation of This Research

] 4

Some Software must not to be run on the
“Virtual Machine Monitor”

— Assuming Real Hardware as authorized hardware(not
Virtual Machine)

— Software includes Operating System
— Assuming TPM is not available on the computer

« When avoiding to use some system including
OS, VM detecting in bootstrap is needed

— VMM Detecting code must be made more smaller.

Copyright by Kunio Miyamoto

a4

Why for Some Software?

B 4

Terminal Hardware |— Terminal VM
VM VM
(for display VM (for display VM

(for terminal
client function)

(for terminal

Informations and S)
client function)

user oparation)

Informations and
user oparation)

VMM(Para Virtualization) VMM(ParaVirtualization)

VMM(Full Virtualization)

Correct Structure
Incorrect Structure

| want to detect running on “Incorrect Structure”

— Architecture like “VM on VM” is not suitable for our
use

Copyright by Kunio Miyamoto

5

VM on VM example(1)

' |m v e ||eaB|lfaeEl o

| 774 REE FTO VMM FoLD Soekold AlE

{EET

! I'El B FIERNO -) Brought .|_||__| i CPUs
1 Far TR 2006 H) AMD I0OHHU:

|| B Windaws Vists lexperimental) H) sxw LOADING DOMAIH B wws

| |__,:] Debizn zarge 1 ¥e kernel . it, PAE, 1sh

A etch20070322) NamA kernel it, PAE, lsb, paddr 8
1 A 2007 (EM} PHYSICAL MEMORY ARRAHNGEMENT :

(50 Other Line 26 kernel
(31 Erchiminimal)
4 Etchipattesnl)
[Etchipattern2)
(31 Etchipattern3)
(51 Etchipstternd)
(31 Erchipatterns)

[Etchipaternd) 1 Boot

[Etchipattern?) : TOTAL :

I':Z.lJ Etchipatterng) 4 ENTRY ADDRESS: cBlBaBBBa

(51 CertOSSminimal DoMB has maximum 1 UCPUs

(50 far_installer Initrd len dedA art at BxcH4?eBHA
[é_*:- Etchipattern MDoO -2 :rubbing Free RAM: done.

5 minimal clone ~ace buflfers:

B dawDF RO

B devDFEOFA Tubr) G i : b (limited: Errors and Warnings)
L:J CpenBSD42 (¥EHN) . g reli shing U console.
Dnaenannd |

Ay Viware: Tools {4 20 B =)L E0T0EE A

- _{olx

G Windows 2000 Professional (EN} DowB alloc.: HEAOAREE1cARARER->PBAEREEEE1cABABEE (118593 pages to be all

Bomen

« Xen is running on VMware Workstation
— | don’t want to run our software like this situration

Copyright by Kunio Miyamoto

6

VMM detection by using
Implementation specific
footprint (widely used)

| 4

Copyright by Kunio Miyamoto

Hints for VMM Detection

'- Popularly Used

— String, Specific Value, Specific Instruction, etc...
« Performance Mismatch

— Instruction Execution Time

— Cache Hit Rate difference
* Functionally Mismatch

— TLB

— VMM Bugs
« Tools

— Imvirt, virt-what

— Checkvm module (in Metasploit)

— Various malware modules for anti-debugging

— RedPill

etc...

Copyright by Kunio Miyamoto

Example: QEMU based VMM

' $ dmesg | grep QEMU

[0.853843] ata2.00: ATAPI: QEMU DVD-ROM, 0.12.1, max UDMA/100
[0.855265] scsi 1:0:0:0: CD-ROM QEMU QEMU DVD-ROM
0.12 PQ: 0 ANSI: 5

[1.208713] usb 1-1: Product: QEMU USB Tablet

[1.208715] usb 1-1: Manufacturer: QEMU 0.12.1

[1.742372] input: QEMU 0.12.1 QEMU USB Tablet as
/devices/pci0000:00/0000:00:01.2/usb1/1-1/1-1:1.0/input/input4

[1.742508] generic-usb 0003:0627:0001.0001: input,hidraw0: USB HID
v0.01 Pointer [QEMU 0.12.1 QEMU USB Tablet] on usb-0000:00:01.2-
1/inputO

« String "QEMU” is appeared here and there
®

Copyright by Kunio Miyamoto

9

VMM detection tools

example(1/3)
T Imvirt
— VMM detection tool
— Project Webpage:

nttp://micky.ibh.net/~liske/imvirt.html

— Known Footprint like resource strings, specific
belaviors(e.g. I/O port access result), etc...

Copyright by Kunio Miyamoto

10

VMM detection tools

example(2/3)
T virt-what
— VMM detection tool
— Project Webpage:

nttp://people.redhat.com/~rjones/virt-what/

— Known Footprint like resource strings, specific
belaviors(e.g. I/O port access result), etc...

Copyright by Kunio Miyamoto

11

VMM detection tools
example(3/3)

”

e Checkvm

— One of modules in Metasploilt.
« Script in Metapreter

— Checks the exploited machine is running on
some VMM.

— Win32/Win64 only

Copyright by Kunio Miyamoto

12

Problem of Implementation
specific footprint use

Copyright by Kunio Miyamoto

Some challenges In
VMM detection

\

Footprint detection Is easy to bypass detection
— e.g. Virtual Disk for VMware, vCPU for KVM, etc...

— Detection by comparing the resource specific string(s)
IS easy to implement, but easy to fake ©

Userland application cannot be use features like
raw features of TLB, CPU Cache, etc...

— These are usable only in the kernel mode.
Targets are Specific Operating Systems

Known VMM can be detected

No one can be believed! (voice from user mode)

Copyright by Kunio Miyamoto

14

New VMM detection method
by using a few assembly
language Instructions

| 4

Copyright by Kunio Miyamoto

Assumption of This approach

p. VMM provides VM(s) fully-virtualized
environment

VMM provides IA32-based environment

* VM(s) on VMM has independent TSC
(Important!)

« RDTSC instruction can be executable on
ring level 3 (important!)

— Popular OSs enables to run RDTSC on ring
level 3

Copyright by Kunio Miyamoto

16

TSC measuring for VM detecting
architecture

B 4

TSC value is fetched to TSC value is fetched to
edx and eax edx and eax
Move edx and eax
RDTSC To safe area RDTSC
execution | movl X 2 execution"

A 4
v

»
» 9

» < <
» N <

" E(before) E(after) E(movl) | E(before) E(after)

\ 4

A 4

& » <
<« > <

E(rdtsc) E(rdtsc)
E(all)

* On the Real Hardware, E(all) is available and always same value
— On the Virtual Machine, E(all) differs per timing of getting E(all)

\ 4

Copyright by Kunio Miyamoto

17

Judging method
VM or Real Machine

| | R
| | T

Getting E(all)

Getting E(all)
— E(all)

— Eall)

o If Ea(all)=E2(all) then Program is running
on Real Machine

« If Ea(all) = E2(all) then Program is running
on VM

Copyright by Kunio Miyamoto

18

Process Scheduling and
time slice assignment

B 4

-

ProcA ProcB

A\ 4

A4

o

ProcC

v

Running User Process

~ CPU assignment
for process running

Process scheduling
(kernel running)

Copyright by Kunio Miyamoto

19

Process executing in VM Is suspended
by whole VM preemption

' VM instance process A

. R T running ser Process This is permitted for our
ProcA
approach
CPU assignment
for process running

Process scheduling
(kernel running)

\

Time slice assigned to ProcB execution on VM instance process A stops because of VM instance
VM instance process A process A is scheduled and CPU time is assigned to other process.
> (Other process (Other process

running period) | _running periog)

—p

Copyright by Kunio Miyamoto

20

VMM detecting process

between process dispatch timing.

N A

ProcA

Eq@l),]

VMM Detecting by
measuring TSC
(Atomic in the time
slice between
procss scheduling)

-

[] []

ProcB ProcC

ProcA

Running User Process

Y

\ 4

v

~ CPU assignment
for process running

Process scheduling
(Kernel Running)

Copyright by Kunio Miyamoto

21

Sample Implementation using
C and Assembly Language

| 4

Copyright by Kunio Miyamoto

Simple!

CPUID

RDTSC

MOV EBX, EAX

MOV ECX, EDX
RDTSC

(EDX:EAX — ECX:EBX)

« CPUID resets Out-of-Order execution in IA32
 These instructions makes RDTSC execution clock

value
— And this value is not stable on the VMM

Copyright by Kunio Miyamoto

23

{

Real Code
(C and Inline Assembler)

l #include <unistd.h>

#include <sys/types.h>
main()

unsigned long long before,after;

char *area,

register unsigned long bhi,blo,ahi,alo;
unsigned long long bhi64,blo64,ahi64,alo64;

__asm__ ("cpuid" :);

__asm__ (".byte 0x0f,0x31" : "=a" (blo),"=d" (bhi));
m__(".byte 0x0f,.0x31": "=a" (alo)."=d" (ahi)):

blo64 = blo;

bhi64 = bhi: 8048397: Of a2 cpuid

alo64 = alo: 8048399: of 31 rdtsc

ahi64 = ahi; 804839b: 89 d1 mov %edx,%ecx
before = bhi64 << 32 | blo; 804839d: 89 c7 mov %eax,%edi
after = ahi64 << 32 | alo; 804839f: of 31 rdtsc
printf("%lld\n",after - before);

Copyright by Kunio Miyamoto

24

TSC measuring for VM detecting
architecture

B 4

8048399: Of 31 rdtsc 804839f: Of 31 rdtsc

C value is fetched\to T value is fetche
edx and eax dx and eax
/Mﬁedx anthQax
RDTSC / Tf\\ RDTSC

execution movl X 2 execution /
\ 4 o \ 4 o

XN > | A?#
fore) E(affer) (\E(movl) / E(befor ter)

804839Db: 89 d1 mov %edx,%ecx q
804839d: 89 c7 mov %eax,%edi

Eall)

* On the Real Hardware, E(all) is available and always same value
— On the Virtual Machine, E(all) differs per timing of getting E(all)

A

>

Copyright by Kunio Miyamoto

25

Result on Real Hardware

Clock for Execution

DO
| A0 *
1 B0
B = L
1 200000
frm sy
300G
B0
4L
2 DI0

I ———————_ EXxecution number

Stable ©

Copyright by Kunio Miyamoto

26

Result on Virtual Machine
(on VMM)

' Clock for Execution

.....

DO
Ll i L
2 Execution number

L

Not Stable ®

Copyright by Kunio Miyamoto

In case of Intel VT/AMD-V

”

* This approach cannot be applied

— Need to be modified little a bit ©

* Trapped Instruction in Intel VT/AMD-V Is:

— CPUID ©

* Modify the Code ! (little a bit ©)

Copyright by Kunio Miyamoto

28

Simple!

l CPUID

RDTSC

MOV ESI, EAX

MOV EDI, EDX

XOR EAX, EAX

INC EAX Added code (3 lines) ©
CPUID

RDTSC

(EDX:EAX — EDIESI)

o« 1st CPUID resets Out-of-Order execution in I1A32

« These instructions makes CPUID + RDTSC(+a) execution
clock value

— And this value is not stable(and/or too large) on the VMM
execution.

Copyright by Kunio Miyamoto

29

Strength and Weakness

T Strong Point

— Detect underlying VMM (or other software like
VMM)

— Detect unknown(or newer) VMM running
— Small and Simple Code

« Can be included in many software

« Weak Point

— Unable to know the name of VMM(or other
software like VMM)

Copyright by Kunio Miyamoto

30

Caution: many kind of TSC

TI know at least 3 kinds of TSC
— (normal) TSC

« Normal TSC In this case,
Code in this program

e Count up by CPU cycle | Returns various clock
Because of CPU clock is modified

— Constant TSC Dynamically.

« Count up interval is fixed time ®
— Not related to the CPU cycle.

* Interval Specified in the boottime clock

— Invariant TSC
« Don’t stop when CPU sleeped ©

Copyright by Kunio Miyamoto

31

VM detecting approach
IN bootstrap process

Copyright by Kunio Miyamoto

VM Detecting Approach

B 4

—
(1) Detect in
The user program User
(2) Detect in Kernel
the kernel

(3) Detect in the bootstrap

Copyright by Kunio Miyamoto

33

Timeline from bootstrap
to running OS

B 4

[Both detecting by user program and detecting
by kernel module is available

VM detection sequence is executed with no }
execution blocking in the system bootstrap.
t

™

Starting OS OS running

System
on the real hardware

Bootstrap begins.

v

Bootstrap
loader

A 4
A
v

A

»
>

A

Detecting by the kernel is similar to detecting by }
bootstrap process

Copyright by Kunio Miyamoto

34

Point of VMM detection

'- VMM detection by kernel module

— One of most reliable approach

— Some restrictions

* Runnability of kernel module depends kind of OSs and these
versions

— e.g. Linux kernel module for 2.4.x cannot be used for Linx kernel 2.6.x

VMM detection by user process
— Easy to use from user programs
— Less reliable than by kernel module

— Suppressing user process preemption is not practical in the
general OS.

VMM detection by bootstrap process Focus
— Running no process

— If Underlying VMM exists, any of preemption is caused because
of VM and other processes scheduling

Copyright by Kunio Miyamoto

35

Benefit of Detection In
Bootstrap Process?

4 Hardware Stabllity

— HW processing speed Is stable just after
powered on.

— VM processing speed Is not stable just after
(VM) invoked

* (Real) Hardware Occupation

— Real HW is occupied by bootstrap loader.
—Stable In processor speed.

— HW is not occupied by bootstrap loader.
—Unstable in processor speed.

Copyright by Kunio Miyamoto

36

Practical use of bootstrap VM

detector
' Program Deploying
Program Developing or Distributing(includes OS
and Testing(includes OS) or distributed as an appliance HW)

Program test
done
Normal boot program
Boot program wit

VM detection.
« Usable for appliance hardware development and
deployment

— Bootstrap VM detector completes in the boot process, and not
affects OS initialization processing

Copyright by Kunio Miyamoto

37

7 8 Chromells - WMwarc WC-Ik:alatl n : S I o S S MEE
R ===

Example(2)

(kD EEL T e T LD et AT |
BRICA H
| 1 Exchivininal -]
[Exchipatzerml)
1 Exchfpatrni
51 C-chipatzemd
'uj F clifpial rmandd
G Exchipatiernd
1 Exchipatzerné)
1 Exchatzemd
& C: h'lp te D?
L) O 10 rin el
5: fer

I Chromebook bootloader verifies hardware (2011)

o
‘ =

(1 Dzt min mel

1 vweb DG AL Mo watker SRS
1 b DAY ACLSMom prctack?

(5 GOS8 im0

| made presentation like this in 2009 @ -

|| (8 deb3C fuenl 1 aned

[deb3 Foenig I

| 8 dobol e nig T30 00—

1 Cor 0530 minina

|'_'t| N i 0 A

1 Detian 33 deskicp —
1 GarS_nes

&l Carl'&lsifraﬂ

i e e _'I_I
iy Vs Teoke 1642 LT o I_EI_W)

« Chrome OS(Lnromium US) will Initially be targetea and tne nemook class
or products (in Google Chrome OS press conference)

Copyright by Kunio Miyamoto

38

Implementation

TAssuming to use GNU GRUB

— GNU GRUB is the bootloader to use Generic
Operating System boot

* Now In progress

— Runs detection mechanism on custom-made
GRUB 1.x (not yet 2.x)

Copyright by Kunio Miyamoto

39

Conclusion

* | proposed new VMM detection approach
— Smalller Code, and Useful Results

— And now In progress to develop VMM detection
software usable everywhere.

* Bootstrap VM detection is more useful than
VM detection in each application if possible.

* | pointed that VMM detection in boottime Is
useful for System-Wide structure assurance.

Copyright by Kunio Miyamoto

40

Thank you!

Copyright by Kunio Miyamoto

