
VMM Detection approach

Maniacs – No one can be

believed 
Kunio Miyamoto a.k.a wakatono

wakatono@todo.gr.jp

Twitter ID: wakatono

1

1

Today’s topic

• Background

• VMM detection by using Implementation specific
footprint (widely used)

• Problem of Implementation specific footprint use

• New VMM detection method by using a few
assembly language instructions

• Sample Implementation using C and Assembler

• VMM detecting apploach in bootstrap process

• VMM detection Implementation in bootloader

• Conclusion

2

2

Copyright by Kunio Miyamoto

Background

3

Copyright by Kunio Miyamoto

Motivation of This Research

• Some Software must not to be run on the

“Virtual Machine Monitor”

– Assuming Real Hardware as authorized hardware(not

Virtual Machine)

– Software includes Operating System

– Assuming TPM is not available on the computer

• When avoiding to use some system including

OS, VM detecting in bootstrap is needed

– VMM Detecting code must be made more smaller.

4

Copyright by Kunio Miyamoto

Why for Some Software?

• I want to detect running on “Incorrect Structure”
– Architecture like “VM on VM” is not suitable for our

use

VMM(Para Virtualization)

VM

(for terminal

client function)

VM

（for display

Informations and

user oparation）

Terminal Hardware

VMM(ParaVirtualization)

VM

(for terminal

client function)

VM

（for display

Informations and

user oparation）

VMM(Full Virtualization)

Terminal VM

Correct Structure

Incorrect Structure

5

Copyright by Kunio Miyamoto

VM on VM example(1)

• Xen is running on VMware Workstation
– I don’t want to run our software like this situration

6

Copyright by Kunio Miyamoto

VMM detection by using

Implementation specific

footprint (widely used)

7

Hints for VMM Detection

• Popularly Used
– String, Specific Value, Specific Instruction, etc…

• Performance Mismatch
– Instruction Execution Time

– Cache Hit Rate difference

• Functionally Mismatch
– TLB

– VMM Bugs

• Tools
– Imvirt, virt-what

– Checkvm module (in Metasploit)

– Various malware modules for anti-debugging

– RedPill

etc…

Copyright by Kunio Miyamoto

8

Example: QEMU based VMM

• String “QEMU” is appeared here and there



Copyright by Kunio Miyamoto

$ dmesg | grep QEMU

[0.853843] ata2.00: ATAPI: QEMU DVD-ROM, 0.12.1, max UDMA/100

[0.855265] scsi 1:0:0:0: CD-ROM QEMU QEMU DVD-ROM

0.12 PQ: 0 ANSI: 5

[1.208713] usb 1-1: Product: QEMU USB Tablet

[1.208715] usb 1-1: Manufacturer: QEMU 0.12.1

[1.742372] input: QEMU 0.12.1 QEMU USB Tablet as

/devices/pci0000:00/0000:00:01.2/usb1/1-1/1-1:1.0/input/input4

[1.742508] generic-usb 0003:0627:0001.0001: input,hidraw0: USB HID

v0.01 Pointer [QEMU 0.12.1 QEMU USB Tablet] on usb-0000:00:01.2-

1/input0

9

VMM detection tools

example(1/3)
• Imvirt

– VMM detection tool

– Project Webpage:

http://micky.ibh.net/~liske/imvirt.html

– Known Footprint like resource strings, specific

belaviors(e.g. I/O port access result), etc…

Copyright by Kunio Miyamoto

10

VMM detection tools

example(2/3)
• virt-what

– VMM detection tool

– Project Webpage:

http://people.redhat.com/~rjones/virt-what/

– Known Footprint like resource strings, specific

belaviors(e.g. I/O port access result), etc…

Copyright by Kunio Miyamoto

11

VMM detection tools

example(3/3)
• Checkvm

– One of modules in Metasploit.

• Script in Metapreter

– Checks the exploited machine is running on

some VMM.

– Win32/Win64 only

Copyright by Kunio Miyamoto

12

Copyright by Kunio Miyamoto

Problem of Implementation

specific footprint use

13

Some challenges in

VMM detection
• Footprint detection is easy to bypass detection

– e.g. Virtual Disk for VMware, vCPU for KVM, etc…

– Detection by comparing the resource specific string(s)
is easy to implement, but easy to fake 

• Userland application cannot be use features like
raw features of TLB, CPU Cache, etc…

– These are usable only in the kernel mode.

• Targets are Specific Operating Systems

• Known VMM can be detected

• No one can be believed! (voice from user mode)

Copyright by Kunio Miyamoto

14

Copyright by Kunio Miyamoto

New VMM detection method

by using a few assembly

language instructions

15

Assumption of This approach

• VMM provides VM(s) fully-virtualized
environment

• VMM provides IA32-based environment

• VM(s) on VMM has independent TSC
(important!)

• RDTSC instruction can be executable on
ring level 3 (important!)

– Popular OSs enables to run RDTSC on ring
level 3

Copyright by Kunio Miyamoto

16

Copyright by Kunio Miyamoto

TSC measuring for VM detecting

architecture

• On the Real Hardware, E(all) is available and always same value
– On the Virtual Machine, E(all) differs per timing of getting E(all)

E(before) E(after)

TSC value is fetched to

 edx and eax

RDTSC

execution

E(rdtsc)

E(before) E(after)

TSC value is fetched to

 edx and eax

E(rdtsc)

movl×2

Move edx and eax

To safe area

E(movl)

E(all)

RDTSC

execution

17

Copyright by Kunio Miyamoto

Judging method

VM or Real Machine

• If E1(all)=E2(all) then Program is running
on Real Machine

• If E1(all) != E2(all) then Program is running
on VM

t

E1(all)

Getting E(all)

 → E2(all)

Getting E(all)

 →

18

Copyright by Kunio Miyamoto

Process Scheduling and

time slice assignment

ProcA ProcB ProcC

Running User Process

CPU assignment

for process running

Process scheduling

(kernel running)

19

Copyright by Kunio Miyamoto

Process executing in VM is suspended

by whole VM preemption

ProcA ProcB ProcC

Running User Process

CPU assignment

for process running

Process scheduling

(kernel running)

VM instance process A

ProcB execution on VM instance process A stops because of VM instance

process A is scheduled and CPU time is assigned to other process.

(Other process

running period)

Time slice assigned to

VM instance process A

(Other process

running period)

This is permitted for our

approach

20

Copyright by Kunio Miyamoto

VMM detecting process

between process dispatch timing.

ProcA ProcB ProcC

Running User Process

CPU assignment

for process running

Process scheduling

(Kernel Running)

VMM Detecting by

measuring TSC

(Atomic in the time

slice between

procss scheduling)

ProcA

E(all)

21

Copyright by Kunio Miyamoto

Sample Implementation using

C and Assembly Language

22

Simple!

• CPUID resets Out-of-Order execution in IA32

• These instructions makes RDTSC execution clock
value
– And this value is not stable on the VMM

Copyright by Kunio Miyamoto

CPUID

RDTSC

MOV EBX, EAX

MOV ECX, EDX

RDTSC

(EDX:EAX – ECX:EBX)

23

Real Code

(C and Inline Assembler)

 Copyright by Kunio Miyamoto

#include <unistd.h>

#include <sys/types.h>

main()

{

 unsigned long long before,after;

 char *area;

 register unsigned long bhi,blo,ahi,alo;

 unsigned long long bhi64,blo64,ahi64,alo64;

 __asm__("cpuid" :);

 __asm__(".byte 0x0f,0x31" : "=a" (blo),"=d" (bhi));

 __asm__(".byte 0x0f,0x31" : "=a" (alo),"=d" (ahi));

 blo64 = blo;

 bhi64 = bhi;

 alo64 = alo;

 ahi64 = ahi;

 before = bhi64 << 32 | blo;

 after = ahi64 << 32 | alo;

 printf("%lld\n",after - before);

}

 8048397: 0f a2 cpuid

 8048399: 0f 31 rdtsc

 804839b: 89 d1 mov %edx,%ecx

 804839d: 89 c7 mov %eax,%edi

 804839f: 0f 31 rdtsc

24

Copyright by Kunio Miyamoto

TSC measuring for VM detecting

architecture

• On the Real Hardware, E(all) is available and always same value
– On the Virtual Machine, E(all) differs per timing of getting E(all)

E(before) E(after)

TSC value is fetched to

 edx and eax

RDTSC

execution

E(rdtsc)

E(before) E(after)

TSC value is fetched to

 edx and eax

E(rdtsc)

movl×2

Move edx and eax

To safe area

E(movl)

E(all)

RDTSC

execution

8048399: 0f 31 rdtsc

 804839b: 89 d1 mov %edx,%ecx

 804839d: 89 c7 mov %eax,%edi

804839f: 0f 31 rdtsc

25

Result on Real Hardware

Copyright by Kunio Miyamoto

Clock for Execution

Execution number

Stable 

26

Result on Virtual Machine

(on VMM)

Copyright by Kunio Miyamoto

Clock for Execution

Execution number

Not Stable 

27

In case of Intel VT/AMD-V

• This approach cannot be applied

– Need to be modified little a bit 

• Trapped Instruction in Intel VT/AMD-V is:

– CPUID 

• Modify the Code ! (little a bit )

Copyright by Kunio Miyamoto

28

Simple!

• 1st CPUID resets Out-of-Order execution in IA32

• These instructions makes CPUID + RDTSC(+α) execution
clock value
– And this value is not stable(and/or too large) on the VMM

execution.

Copyright by Kunio Miyamoto

CPUID

RDTSC

MOV ESI, EAX

MOV EDI, EDX

XOR EAX, EAX

INC EAX

CPUID

RDTSC

(EDX:EAX – EDI:ESI)

Added code (3 lines) 

29

Strength and Weakness

• Strong Point

– Detect underlying VMM (or other software like

VMM)

– Detect unknown(or newer) VMM running

– Small and Simple Code

• Can be included in many software

• Weak Point

– Unable to know the name of VMM(or other

software like VMM)

Copyright by Kunio Miyamoto

30

Caution: many kind of TSC

• I know at least 3 kinds of TSC

– (normal) TSC

• Normal TSC

• Count up by CPU cycle

– Constant TSC

• Count up interval is fixed time 

– Not related to the CPU cycle.

• Interval Specified in the boottime clock

– Invariant TSC

• Don’t stop when CPU sleeped 

Copyright by Kunio Miyamoto

In this case,

Code in this program

Returns various clock

Because of CPU clock is modified

Dynamically.

31

Copyright by Kunio Miyamoto

VM detecting approach

in bootstrap process

32

Copyright by Kunio Miyamoto

VM Detecting Approach

(1) Detect in

The user program User

Kernel (2) Detect in

 the kernel

(3) Detect in the bootstrap

33

Copyright by Kunio Miyamoto

Timeline from bootstrap

to running OS

VM detection sequence is executed with no

execution blocking in the system bootstrap.

t

System

on the real hardware

Bootstrap begins.

Bootstrap

loader

Starting OS

Detecting by the kernel is similar to detecting by

bootstrap process

OS running

Both detecting by user program and detecting

by kernel module is available

34

Copyright by Kunio Miyamoto

Point of VMM detection

• VMM detection by kernel module
– One of most reliable approach

– Some restrictions
• Runnability of kernel module depends kind of OSs and these

versions
– e.g. Linux kernel module for 2.4.x cannot be used for Linx kernel 2.6.x

• VMM detection by user process
– Easy to use from user programs

– Less reliable than by kernel module

– Suppressing user process preemption is not practical in the
general OS.

• VMM detection by bootstrap process
– Running no process

– If Underlying VMM exists, any of preemption is caused because
of VM and other processes scheduling

Focus

35

Benefit of Detection in

Bootstrap Process?
• Hardware Stability

– HW processing speed is stable just after
powered on.

– VM processing speed is not stable just after
(VM) invoked

• (Real) Hardware Occupation

– Real HW is occupied by bootstrap loader.
→Stable in processor speed.

– HW is not occupied by bootstrap loader.
→Unstable in processor speed.

Copyright by Kunio Miyamoto

36

Copyright by Kunio Miyamoto

Practical use of bootstrap VM

detector

• Usable for appliance hardware development and
deployment
– Bootstrap VM detector completes in the boot process, and not

affects OS initialization processing

Program Developing

and Testing(includes OS)

Normal boot program

Program test

done

Program Deploying

or Distributing(includes OS

or distributed as an appliance HW)

Boot program with

VM detection.

37

Copyright by Kunio Miyamoto

Example(2)

• Chrome OS(Chromium OS) will initially be targeted and the netbook class
or products (in Google Chrome OS press conference)

Chromebook bootloader verifies hardware (2011)

I made presentation like this in 2009 

38

Copyright by Kunio Miyamoto

Implementation

• Assuming to use GNU GRUB

– GNU GRUB is the bootloader to use Generic

Operating System boot

• Now in progress

– Runs detection mechanism on custom-made

GRUB 1.x (not yet 2.x)

39

Copyright by Kunio Miyamoto

Conclusion

• I proposed new VMM detection approach

– Smaller Code, and Useful Results

– And now in progress to develop VMM detection

software usable everywhere.

• Bootstrap VM detection is more useful than

VM detection in each application if possible.

• I pointed that VMM detection in boottime is

useful for System-Wide structure assurance.

40

Copyright by Kunio Miyamoto

Thank you!

41

