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Background
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Motivation of This Research
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Some Software must not to be run on the
“Virtual Machine Monitor”

— Assuming Real Hardware as authorized hardware(not
Virtual Machine)

— Software includes Operating System
— Assuming TPM is not available on the computer

« When avoiding to use some system including
OS, VM detecting in bootstrap is needed

— VMM Detecting code must be made more smaller.
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Why for Some Software?
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Terminal Hardware |— Terminal VM
VM VM
(for display VM (for display VM

(for terminal
client function)

(for terminal

Informations and S )
client function)

user oparation)

Informations and
user oparation)

VMM(Para Virtualization) VMM(ParaVirtualization)

VMM(Full Virtualization)

Correct Structure
Incorrect Structure

| want to detect running on “Incorrect Structure”

— Architecture like “VM on VM” is not suitable for our
use

Copyright by Kunio Miyamoto

5




VM on VM example(1)
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« Xen is running on VMware Workstation
— | don’t want to run our software like this situration
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VMM detection by using
Implementation specific
footprint (widely used)
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Hints for VMM Detection

'- Popularly Used

— String, Specific Value, Specific Instruction, etc...
« Performance Mismatch

— Instruction Execution Time

— Cache Hit Rate difference
* Functionally Mismatch

— TLB

— VMM Bugs
« Tools

— Imvirt, virt-what

— Checkvm module ( in Metasploit )

— Various malware modules for anti-debugging

— RedPill

etc...
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Example: QEMU based VMM

' $ dmesg | grep QEMU

[ 0.853843] ata2.00: ATAPI: QEMU DVD-ROM, 0.12.1, max UDMA/100
[ 0.855265] scsi 1:0:0:0: CD-ROM QEMU QEMU DVD-ROM
0.12 PQ: 0 ANSI: 5

[ 1.208713] usb 1-1: Product: QEMU USB Tablet

[ 1.208715] usb 1-1: Manufacturer: QEMU 0.12.1

[ 1.742372] input: QEMU 0.12.1 QEMU USB Tablet as
/devices/pci0000:00/0000:00:01.2/usb1/1-1/1-1:1.0/input/input4

[ 1.742508] generic-usb 0003:0627:0001.0001: input,hidraw0: USB HID
v0.01 Pointer [QEMU 0.12.1 QEMU USB Tablet] on usb-0000:00:01.2-
1/inputO

« String "QEMU” is appeared here and there
®
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VMM detection tools

example(1/3)
T Imvirt
— VMM detection tool
— Project Webpage:

nttp://micky.ibh.net/~liske/imvirt.html

— Known Footprint like resource strings, specific
belaviors(e.g. I/O port access result), etc...
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VMM detection tools

example(2/3)
T virt-what
— VMM detection tool
— Project Webpage:

nttp://people.redhat.com/~rjones/virt-what/

— Known Footprint like resource strings, specific
belaviors(e.g. I/O port access result), etc...
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VMM detection tools
example(3/3)

”

e Checkvm

— One of modules in Metasploilt.
« Script in Metapreter

— Checks the exploited machine is running on
some VMM.

— Win32/Win64 only
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Problem of Implementation
specific footprint use
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Some challenges In
VMM detection

\

Footprint detection Is easy to bypass detection
— e.g. Virtual Disk for VMware, vCPU for KVM, etc...

— Detection by comparing the resource specific string(s)
IS easy to implement, but easy to fake ©

Userland application cannot be use features like
raw features of TLB, CPU Cache, etc...

— These are usable only in the kernel mode.
Targets are Specific Operating Systems

Known VMM can be detected

No one can be believed! (voice from user mode)
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New VMM detection method
by using a few assembly
language Instructions
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Assumption of This approach

p. VMM provides VM(s) fully-virtualized
environment

VMM provides IA32-based environment

* VM(s) on VMM has independent TSC
(Important!)

« RDTSC instruction can be executable on
ring level 3 (important!)

— Popular OSs enables to run RDTSC on ring
level 3
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TSC measuring for VM detecting
architecture
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TSC value is fetched to TSC value is fetched to
edx and eax edx and eax
Move edx and eax
RDTSC To safe area RDTSC
execution | movl X 2 execution"

A 4
v

»
» 9

» < <
» N <

" E(before) E(after) E(movl) | E(before) E(after)

\ 4

A 4

& » <
<« > <

E(rdtsc) E(rdtsc)
E(all)

* On the Real Hardware, E(all) is available and always same value
— On the Virtual Machine, E(all) differs per timing of getting E(all)

\ 4
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Judging method
VM or Real Machine

| | R
| | T

Getting E(all)

Getting E(all)
— E(all)

— Eall)

o If Ea(all)=E2(all) then Program is running
on Real Machine

« If Ea(all) = E2(all) then Program is running
on VM
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Process Scheduling and
time slice assignment
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-

ProcA ProcB

A\ 4

A4

o

ProcC

v

Running User Process

~ CPU assignment
for process running

Process scheduling
(kernel running)
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Process executing in VM Is suspended
by whole VM preemption

' VM instance process A

. R T running ser Process This is permitted for our
ProcA
approach
CPU assignment
for process running

Process scheduling
(kernel running)

\

Time slice assigned to ProcB execution on VM instance process A stops because of VM instance
VM instance process A process A is scheduled and CPU time is assigned to other process.
> (Other process (Other process

running period) | _running periog)

—p
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VMM detecting process

between process dispatch timing.

N A

ProcA

Eq@l),]

VMM Detecting by
measuring TSC
(Atomic in the time
slice between
procss scheduling)

-

[] []

ProcB ProcC

ProcA

Running User Process

Y

\ 4

v

~ CPU assignment
for process running

Process scheduling
(Kernel Running)
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Sample Implementation using
C and Assembly Language
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Simple!

CPUID

RDTSC

MOV EBX, EAX

MOV ECX, EDX
RDTSC

(EDX:EAX — ECX:EBX)

« CPUID resets Out-of-Order execution in IA32
 These instructions makes RDTSC execution clock

value
— And this value is not stable on the VMM
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Real Code
(C and Inline Assembler)

l #include <unistd.h>

#include <sys/types.h>
main()

unsigned long long before,after;

char *area,

register unsigned long bhi,blo,ahi,alo;
unsigned long long bhi64,blo64,ahi64,alo64;

__asm__ ("cpuid" :);

__asm__ (".byte 0x0f,0x31" : "=a" (blo),"=d" (bhi));
m__(".byte 0x0f,.0x31": "=a" (alo)."=d" (ahi)):

blo64 = blo;

bhi64 = bhi: 8048397: Of a2 cpuid

alo64 = alo: 8048399: of 31 rdtsc

ahi64 = ahi; 804839b: 89 d1 mov  %edx,%ecx
before = bhi64 << 32 | blo; 804839d: 89 c7 mov  %eax,%edi
after = ahi64 << 32 | alo; 804839f: of 31 rdtsc
printf("%lld\n",after - before);
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TSC measuring for VM detecting
architecture

B 4

8048399: Of 31 rdtsc 804839f: Of 31 rdtsc

C value is fetched\to T value is fetche
edx and eax dx and eax
/Mﬁedx anthQax
RDTSC / Tf\\ RDTSC

execution movl X 2 execution /
\ 4 o \ 4 o

XN > | A?#
fore) E(affer) (\E(movl) / E(befor ter)

804839Db: 89 d1 mov  %edx,%ecx q
804839d: 89 c7 mov  %eax,%edi

Eall)

* On the Real Hardware, E(all) is available and always same value
— On the Virtual Machine, E(all) differs per timing of getting E(all)

A

>
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Result on Real Hardware

Clock for Execution

DO
| A0 *
1 B0
B = L
1 200000
frm sy
300G
B0
4L
2 DI0

I ———————_ EXxecution number

Stable ©
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Result on Virtual Machine
(on VMM)

' Clock for Execution

.....

DO
Ll i L
2 Execution number

L

Not Stable ®
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In case of Intel VT/AMD-V

”

* This approach cannot be applied

— Need to be modified little a bit ©

* Trapped Instruction in Intel VT/AMD-V Is:

— CPUID ©

* Modify the Code ! ( little a bit © )
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Simple!

l CPUID

RDTSC

MOV ESI, EAX

MOV EDI, EDX

XOR EAX, EAX

INC EAX Added code (3 lines) ©
CPUID

RDTSC

(EDX:EAX — EDIESI)

o« 1st CPUID resets Out-of-Order execution in I1A32

« These instructions makes CPUID + RDTSC(+a) execution
clock value

— And this value is not stable(and/or too large) on the VMM
execution.
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Strength and Weakness

T Strong Point

— Detect underlying VMM (or other software like
VMM)

— Detect unknown(or newer) VMM running
— Small and Simple Code

« Can be included in many software

« Weak Point

— Unable to know the name of VMM(or other
software like VMM)

Copyright by Kunio Miyamoto

30




Caution: many kind of TSC

TI know at least 3 kinds of TSC
— (normal) TSC

« Normal TSC In this case,
Code in this program

e Count up by CPU cycle | Returns various clock
Because of CPU clock is modified

— Constant TSC Dynamically.

« Count up interval is fixed time ®
— Not related to the CPU cycle.

* Interval Specified in the boottime clock

— Invariant TSC
« Don’t stop when CPU sleeped ©
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VM detecting approach
IN bootstrap process
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VM Detecting Approach
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—
(1) Detect in
The user program User
(2) Detect in Kernel
the kernel

(3) Detect in the bootstrap
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Timeline from bootstrap
to running OS
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[ Both detecting by user program and detecting
by kernel module is available

VM detection sequence is executed with no }
execution blocking in the system bootstrap.
t

™

Starting OS OS running

System
on the real hardware

Bootstrap begins.

v

Bootstrap
loader

A 4
A
v

A

»
>

A

Detecting by the kernel is similar to detecting by }
bootstrap process
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Point of VMM detection

'- VMM detection by kernel module

— One of most reliable approach

— Some restrictions

* Runnability of kernel module depends kind of OSs and these
versions

— e.g. Linux kernel module for 2.4.x cannot be used for Linx kernel 2.6.x

VMM detection by user process
— Easy to use from user programs
— Less reliable than by kernel module

— Suppressing user process preemption is not practical in the
general OS.

VMM detection by bootstrap process Focus
— Running no process

— If Underlying VMM exists, any of preemption is caused because
of VM and other processes scheduling
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Benefit of Detection In
Bootstrap Process?

4 Hardware Stabllity

— HW processing speed Is stable just after
powered on.

— VM processing speed Is not stable just after
(VM) invoked

* (Real) Hardware Occupation

— Real HW is occupied by bootstrap loader.
—Stable In processor speed.

— HW is not occupied by bootstrap loader.
—Unstable in processor speed.
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Practical use of bootstrap VM

detector
' Program Deploying
Program Developing or Distributing(includes OS
and Testing(includes OS) or distributed as an appliance HW)

Program test
done
Normal boot program
Boot program wit

VM detection.
« Usable for appliance hardware development and
deployment

— Bootstrap VM detector completes in the boot process, and not
affects OS initialization processing
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« Chrome OS(Lnromium US) will Initially be targetea and tne nemook class
or products (in Google Chrome OS press conference)
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Implementation

TAssuming to use GNU GRUB

— GNU GRUB is the bootloader to use Generic
Operating System boot

* Now In progress

— Runs detection mechanism on custom-made
GRUB 1.x ( not yet 2.x)
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Conclusion

* | proposed new VMM detection approach
— Smalller Code, and Useful Results

— And now In progress to develop VMM detection
software usable everywhere.

* Bootstrap VM detection is more useful than
VM detection in each application if possible.

* | pointed that VMM detection in boottime Is
useful for System-Wide structure assurance.
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Thank you!
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