Introduce LLVM from
a hacker's view.

mailto:hlchou@mail2000.com.tw

| am Loda.
« Work for 7 5 & (DeSign House).
* Be familiar for MS-Windows System and
Android/Linux Kernel.
* Sometimes... also do some software crack job.
* Like to dig-in new technology and share technical
articles to promote to the public.

* Motto
* The way of a fool seems right to him ,but a wise man

listens to advice. (Proverbs 12:15)

i

Created by Vikram Adve and Chris Lattn

Support different front-end compilers (gcc/clang]/....) and different
languages (C/C++,0bject-C,Fortran,Java
ByteCode,Python,ActionScript) to generate BitCode.

The core of LLVM is the intermediate representation (IR). Different
front-ends would compile source code to SSA-based IR, and
traslate the IR into different native code on different platform.

Provide RISC-like instructions (load/store... etc), unlimited registers,
exception (setjmp/longjmp)..etc

Provide LLVM Interpreter and LLVM Compiler to run LLVM
application.

Let's e
njoy it

Android Dalvik RunTime

Dalvik
Virtual Machine

g |

Java Native Interface

The features of Dalvik VM

+ Per-Process per-VM ——_—_

* JDK will compile Java to Sun’s bytecode, Android would
use dx to convert Java bytecode to Dalvik bytecode.

Support Portable Interpreter (in C), Fast Interpreter (in
Assembly) and Just-In Time Compiler

* Just-In-Time Compiler is Trace-Run based.
* By Counter to find the hot-zone

* Would translate Dalvik bytecode to
ARMv32/NEON/Thumb/Thumb2/..etc CPU instructions.

LLVM Interpreter RunTime

Running by LLI (Low Level Virtual Machine
\Interpreter & Dynamic Compiler) -

\

Could run llvm-application as t
application

Could generate small size BitCode, translate to target
platform assembly code then compiled into native

execution file (final size would be almost the same as you
compile it directly from source by GCC or other compiler.)

Support C/C++/... program to seamlessly execute on
variable hardware platform.
* x86, ARM, MIPS,PowerP(C,Sparc,XCore,Alpha... etc

Google would apply it into Android and Browser (Native
Client)

i

The LLVM Compiler Work-Flows.

X86 X86
Assembly Execution File

arm-none-linux-gnueabi-gcc

LLVM -mcpu=cortex-ag
Compiler ARM ARM
Assembly Execution File

LLVM in Mobile Device

10

LLVM in Browser

Would passed the security
checking before execution.

. UnTrust Part

—

Call to run-time
framework

IMC : Inter-Module Communications Storage

. Trust Part

Service

SRPC : Simple RPC
NPAPI : Netscape Plugin Application Programming Interface

11

LLVM Compiler Demo.

=»Use clang to compile BitCode File.

[root@Ilocalhost reference _codel# clang -O2 -emit-llvm sample.c -c -o sample.bc
[root@localhost reference_code]# s -I sample.bc

-rw-r--r--. 1 root root 1956 May 12 10:28 sample.bc

=» Convert BitCode File to Xx86-64 platform assembly code.

[root@Ilocalhost reference_code]# llc -O2 -mcpu=x86-64 sample.bc -0 sample.s
=» Compiler the assembly code to Xx86-64 native execution file.
[root@localhost reference_code]# gcc sample.s -o sample -IdI
[root@localhost reference _codel# s -l sample

-rwXxr-xr-x. 1 root root 8247 May 12 10:36 sample

=» Convert BitCode File to ARM Cortext-A9 platorm assembly code.

[root@localhost reference_code]# llc -O2 -march=arm -mcpu=cortex-ag sample.bc -0

sample.s

=» Compiler the assembly code to ARM Cortext-A9 native execution file.

[root@localhost reference_code]# arm-none-linux-gnueabi-gcc -mcpu=cortex-ag sample.s -Idl -o
sample

[root@localhost reference_code]# s -| sample

-rwXr-xr-x. 1 root root 6877 May 12 10:54 sample

12

What is the problems for LLVM?
\

Let” s see a simple sample
code.

LLVM dlopen/dlsymc Sample.
R

[root@www LLVM]# clang -O2 -emit-llvm dlopen.c -c -o dlopen.bc
[root@www LLVM]# lli dlopen.bc

* libraryHandle:86f5e4c8h

puts function pointer:85e81330h

* loda

int (*puts_fp)(const char *);

int main()

{
void * libraryHandle;
libraryHandle = dlopen("libc.s0.6", RTLD_NOW);
printf("libraryHandle:%xh\n",(unsigned int)libraryHandle);
puts_fp = dlsym(libraryHandle, "puts");
printf("puts function pointer:%xh\n",(unsigned int)puts_fp);
puts_fp("loda");
return o;

14

Make execution code as data buffer

* Would place the piece of machi ode as a dat:
to verify the native/LLVM run-time behaviors.

0000000000000000 <AsmFunc>:

0: 55 push Zrbp

1: 48 89 e5 mov %rsp,%rbp

4: b8 04 000000 mov $0x4,%eax

9: bb o100 0000 mov $0x1,%ebx

e: b9oo 000000 mov $0Xx0,%ecx
f: R_X86 64 32 gpHello

13: ba10 00 00 00 mov $0x10,%edx

18: ¢d 80 int $0x80

1a: b8 1100 00 00 mov $0x11,%eax

1f: ¢9 leaveq

20: C3 retq

15

Native Program Run Code in Data

Segment
\

« [root@www LLVM]# gcc self-modify.c -o self-modify
[root@www LLVMJ# ./self-modify
* Segmentation fault

int (*f2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0%x00,0xb9,0x4
0,0X0¢,0Xx60,0X00,0xba,0x10,0X00,0X00,0x00,0xcd,0x80,0xb8,0x11,0X00,0X00,0X00,0XC9,0XC3};
char gpHello[]="Hello Loda!ok!\n";
int main()
{

int vRet;

unsigned long vpHello=(unsigned long)gpHello;

TmpAsmCode[19]=vpHello>>24 & oxff;

TmpAsmCode[18]=vpHello>>16 & oxff;

TmpAsmCode[17]=vpHello>>8 & oxff;

TmpAsmCode[16]=vpHello & oxff;

f2=(int (*)())TmpAsmCode;

vRet=f2();

printf("vRet=:%d\n",vRet);

return o;

Native Program Run Code in Data

Segment with Page EXEC-settings

*

*

*

*

[root@www LLVM]# gcc self-modify.c -o self-modify
[root@www LLVM# ./self-modify

Hello Loda'ok!
vRet=:17

int (*f2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0x00,0x00,0x00,0xbb,0x01,0x00,0x00,0x00,0xb9,0x4
0,0X0¢,0X60,0Xx00,0xba,0x10,0X00,0X00,0x00,0xcd,0x80,0xb8,0x11,0X00,0X00,0X00,0XC9,0XC3};

char gpHello[]="Hello Loda!ok!\n";

int main()

{

int vRet;

unsigned long vpHello=(unsigned long)gpHello;

unsigned long page = (unsigned long) TmpAsmCode & ~(4096 - 1);

if(mprotect((char*) page,4096,PROT_READ | PROT_WRITE | PROT_EXEC))
perror("mprotect failed");

TmpAsmCode[19]=vpHello>>24 & oxff;

TmpAsmCode[18]=vpHello>>16 & oxff;

TmpAsmCode[17]=vpHello>>8 & oxff;

TmpAsmCode[16]=vpHello & oxff;

f2=(int (*)())TmpAsmCode;

vRet=f2();

printf("vRet=:%d\n",vRet);

return o;

17

LLVM AP Run Code in Data Segment

with EXEC-settings

[root@www LLVM]# clang -O2 -emit-llvm llvm-self-modify.c -c -o llvm-self-modify.bc

[root@www LLVM]# lli llvm-self-modify.bc
* Hello Loda!ok!

int (*F2)();
* vRet=:17

char

TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0X00,0X00,0x00,0xbb,0x01,0x00,0X00,0X00,0xb9,0X40,0X0C,0X60,0X00,0Xb
a,0x10,0X00,0X00,0x00,0xcd,0x80,0xb8,0x11,0X00,0X00,0X00,0XC9,0XC3};
char gpHello[]="Hello Loda!ok!\n";

int main()
{
int vRet;
unsigned long vpHello=(unsigned long)gpHello;

unsigned long page = (unsigned long) TmpAsmCode & ~(4096 - 1);

if(mprotect((char*) page,4096,PROT_READ | PROT_WRITE | PROT_EXEC))
perror("mprotect failed");

char *base_string=malloc(256);

strcpy(base_string,gpHello);

vpHello=(unsigned long)base_string;

TmpAsmCode[19]=vpHello>>24 & oxff;

TmpAsmCode[18]=vpHello>>16 & oxff;

TmpAsmCode[17]=vpHello>>8 & oxff;

TmpAsmCode[16]=vpHello & oxff;

f2=(int (*)())TmpAsmCode;

vRet=f2();

printf(""vRet=:%d\n",vRet);

return o;

*

*

*

LLVM AP Run Code in Data Segment

[root@www LLVM]# clang -O2 -emit-llvm llvm-self-modify.

without EXEC-settings?

[root@www LLVM]# lli llvm-self-modify.bc
Hello Loda'ok! = It still works!

vRet=:17

int (*£2)();

char
TmpAsmCode[]={0x90,0x55,0x48,0x89,0xe5,0xb8,0x04,0X00,0X00,0x00,0xbb,0x01,0x00,0X00,0X00,0xb9,0X40,0X0C,0X60,0X00,0Xb
a,0x10,0X00,0X00,0x00,0xcd,0x80,0xb8,0x11,0X00,0X00,0X00,0XC9,0XC3};

char gpHello[]="Hello Loda!ok!\n";

int main()
{
int vRet;
unsigned long vpHello=(unsigned long)gpHello;

char *base_string=malloc(256);
strcpy(base_string,gpHello);
vpHello=(unsigned long)base_string;
TmpAsmCode[19]=vpHello>>24 & oxff;
TmpAsmCode[18]=vpHello>>16 & oxff;
TmpAsmCode[17]=vpHello>>8 & oxff;
TmpAsmCode[16]=vpHello & oxff;
f2=(int (*)())TmpAsmCode;

vRet=f2();

printf(""vRet=:%d\n",vRet);

return o;

So.....What we got:

* LLVM could run data-segment e

* LLVM doesn’t provide a strict sandbox to prevent
the unexpected program flows.

+ For installed-application, maybe it is ok. (could
protect by Android Kernel-Level Application Sandbox)

* How about LLVM running in Web Browser?

/

Bidirectional
Running by LLI (Low Level Virtual Machine Function Call

\Interpreter & Dynamic Compiler) Y,

Technology always come from

Native Client(Nacl) - a vision of the

future

* Provide the browser to run web applicatio ative code.

* Based on Google’s sandbox, it would just drop 5%
performance compared to original native application.

* Could be available in Chrome Browser already.
* The Native Client SDK only support the C/C++ on x86 32/64
bits platform.

Provide Pepper APIs (derived from Mozilla NPAPI). Pepper
v2 added more APIs.

22

Hack Google's Native Client and

$3,192

i

Hack Google's Native Client and
get $8,192

By Garett Rogers | February 27, 2009, 4:57pm PST

Summary: Google is challenging hackers to rip apart their ActiveX alternative called Google
Native Client. Native Client allows users to run native x86 code on the web — something that has
been deemed as extremely dangerous, especially from unirusted sources. Google says this
challenge is to make Native Client more secure, but I think this may [...]

Google is challenging hackers to rip apart their ActiveX alternative called Google Native Client.
MNative Client allows users to run native x86 code on the web — something that has been deemed
as extremely dangerous, especially from untrusted sources.

Google says this challenge is to make Native Client more secure, but I think this may also be a
great way to gain some trust points for technologies like this. Winners of the challenge are
awarded cash prizes — the grand prize is $8,192U50.

There are five cash prizes: The first prize is $8,192, the second prize $4,096, the third prize
is $2,048, the fourth prize is $1,024 and the fifth prize is $1,024. All amounts are in USD.

If they can get through this challenge without any serious problems being reported, that's a huge

win for Google, and some pretty impressive marketing material. That type of marketing ammo can
be used to possibly help future pushes to get this type of technology pre-installed in browsers.

http://www.zdnet.com/blog/google/hack-
googles-native-client-and-get-8192/1295

23

http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295
http://www.zdnet.com/blog/google/hack-googles-native-client-and-get-8192/1295

Security of Native Client

* Data integrity

* Native Client's sandbox works by validating the untrusted
code (the compiled Native Client module) before running it

* No support for process creation [subprocesses
** You can call pthread

No support for raw TCP/UDP sockets (websockets for TCP
and peer connect for UDP)

* No unsafe instructions

* inline assembly must be compatible with the Native Client
validator (could use ncval utility to check)

http://code.google.com/p/nativeclient/issues/list

24

How Native Client Work?
\

m_) Browsing WebPage Launch nacl64.exe to Execute
with Native Client. > the NaCl Executable (*.NEXE) file.
Chromium

Browser

27188 oozl Chrome

25

Main Process and Dynamic Library

C:\Users\loda\AppData\Local\Temp ib6all ibdl.so.3c8d1f2e
6934.Tmp (=libc.so.3c8d1f2e) lib64/libgcc_s.s0.1
6922.Tmp (=libdl.so.3c8d1f2e) lib64/libpthread.so.3c8d1f2e
6933.tmp (=libgcc_s.s0.1) lib64/runnable-ld.so
6912.tmp (=libpthread.so.3c8d1f2e) hello loda.html
67D8.tmp (=runnable-ld.so) hello loda.nmf

66AE.tmp (=hello_loda.nmf) hello_loda_x86_32.nexe
6901.Tmp (= hello_loda_x86_64.nexe) @

hello_loda x86 64.nexe

Chromium
Browser

Download the main process and
dynamic run-time libraries.

Server provided
Native Client Page

26

Dynamic libraries Inheritance

relationship

_‘

Hello Loda Process (.NEXE)

libpthread.so.3c8drf2e. _‘l'_

*_ \

27

Portable Native Client (PNacCl)
+ PNacCl (pronoum

* Based on LLVM to provided an ISA-neutral format for
compiled NaCl modules supporting a wide variety of target
platforms without recompilation from source.

* Support the x86-32, x86-64 and ARM instruction sets now.

* Still under the security and performance properties of
Native Client.

28

LLVM and PNacCl

Badki-end translator

(llc)
("TRANSLATOR")

Front-end compiler

(Ilvm-gce, clang, etc)
("COMPILER")

[Portable Executable }
(single bitcode file)
}/ System linker and intrinsics libraries

Bitcode optimizer (opt) and
link er (link)

Developer Server Client

Refer from Google’s ‘PNaCl Portable Native Client Executables ’ document. 29

PNadCl Shared Libraries

—
Libtest.pso

App.pexe

Translate to
pnacl- translate native code pnacl-translate

Libtest.so

Execute under Native Client
RunTime Environment

http://[www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture

30

http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture
http://www.chromium.org/nativeclient/pnacl/pnacl-shared-libraries-final-picture

Before SFI

* Trust wit

* Such as the ActiveX technologyin Microsoft W
download the native web application plug-in the browser (MS

Internet Explorer). User must authorize the application to runin
browser.

EEEEEENT FIFISH 8 'Microsoft Corporetion’ £ "Microso't Forms DLL' - Coame v
BTEEBIW

+ User-ID based Access Control

* Android Application Sandbox use Linux user-based protection to
identify and isolate application resources. Each Android
application runs as that user in a separate process, and cannot
interact with each other under the limited access to the
operating system..

31

General User/Kernel Space Protection

Process individual Process individual Process individual
memory space memory space memory space

User Space [° User Space [} User Space
Application p- « Application p @ Application
#1 #2 #3

Code Application could use
Trust Code provided services by System Ca

Kernel Space
Device Drivers and Kernel Modules

Fault Isolation

CFI (CISC Fault Isolation) e

* Based on x86 Code/Data Segment Register to reduce
the overhead, NaCl CFl would increase around 2%
overhead.

* SFI

* NaCl SFI would increase 5% overhead in Cortex A9 out-
of-order ARM Processor, and 7% overhead in x86 64
Processor.

1,ARM instruction length is fixed to 32-bits or 16bits
(depend on ARMv32,Thumb or Thumb2 ISA)
2,X86 instruction length is variable from 1 to 1x bytes.

33

CISC Fault Isolation

arget Address & £

UnTrust Code
Region

34

Software Fault Isolation

L ——

Process individual memory space

N,

User Space
SFI
UnTrust

User Space

SFI

i Trust Code Code |
UnTrustCode —~ Application could use kernel
Trust Code ‘1' provided services by System Call

Kernel Space

Device Drivers and Kernel Modules

35

SFI SandBox

PNaCl would download the'whole execu

dynamic libraries)

Would use x86_64 environment as the verification sample.

* Each x86_64 App would use 4GB memory space.

* But for ARM App, it would only use 0-1GB memory space.

x86 64 R15 Registers would be defined as “Designated Register
RZP” (Reserved Zero-address base Pointer),and initiate as a 4GB

aligned base address to map the UnTrust Memory space. For the
UnTrust Code, R15 Registers is read-only.

36

RSP/RBP Register Operation

* The modification of 64bits RSP/RBP would be re ed by
set instructions to limit the 64bits RSP/RBP would be limited
in allowed 32bits range.

10001€0: 8b 2¢ 24 mov (%rsp),%ebp
10001€3: 4a 8d 6¢ 3d 00 lea oxo(%rbp,%r15,1),%rbp
10001e8: 83 ¢4 08 add sox8,%esp

10001eb: 4a 8d 24 3¢ lea (%rsp,%r15,1),%rsp

37

Function Call

* The function target address would be 1t ’

and limit the target address to allowed 32bits range by R15.

1000498: 83 e0e0 and $oxffffffeo,%eax

100049b: 4c 0118 add %r15,%rax
100049e: ffdo callg *%rax

* For the internal UnTrust function directly calling, it doesn’t
need to filter by the R15

+ vRet=987*testA(111);

10004bb: e8 co fe ff ff callg 1000380 <testA>
10004c0: 69codbo3oooo imul $ox3db,%eax,%eax

38

Function Return

T =S

« The function return address would be 32 bytes alignment,

and limit the target address to allowed 32bits range by R15.

10004e8: 83 e1e0 and $oxffffffeo,%ecx
10004eb: 4co1f9g add %r15,%rcx
10004ee: ffet jmpq *%rcx

39

For Hacker’s View

* LLVM support IR and could run‘on varia
platforms.

* Portable native client + LLVM should be a good
candidate to play role in Android and Browser usage.
(in SFI SandBox)

* |t is a new security protection model, use user-space
Sandbox to run native code and validate the native
instruction without kernel-level privilege involved.

a1

Appendix

e

The differences of Dalvik and LLVM (1/2)

* From compiled execution code -
+ LLVM transfer to 100% native code. Dalvik VM need to based
on the JIT Trace-Run Counter.
* From the JIT native-code re-used

* After Dalvik VM process restart, the JIT Trace-Run procedures
need to perform again. But after LLVM application transfer to
100% native code, it could run as native application always.

* From CPU run-time loading

* Dalvik application need to calculate the Trance-Run Counter in
run-time and perform JIT. LLVM-based native application
could save this extra CPU loading.

43

The differences of Dalvik and LLVM (2/2)

* From the run-tin

« Dalvik application convert to JIT native code wa ~
memory as JIT-Cache. If user use Clang to compile C code as
BitCode and then use LLVM compiler to compile the BitCode to
native assembly, it could save more run-time memory usage.

« If Dalvik application transfer the loading to JNI native .so library, it
would need extra loading for developer to provide .so for different
target processors’ instruction.

* From the Storage usage

* General Dalvik application need a original APK with .dex file and
extra .odex file in dalvik-cache. But LLVM application doesn’t need

it.
* From the system security view of point

LLVM support pointer/function-pointer/inline-assembly and have
the more potential security concern than Java.

44

NaCl Source Code

« NaCl is salt —

* Download the native client source code
* http://code.google.com/p/nativeclient/wiki/Source?tm=4
« cd $NACL_ROOT

« gclient config

http://src.chromium.org/native_client/trunk/src/native cl
ient

* gclient sync

http://code.google.com/p/nativeclient/issues/list

http://code.google.com/p/nativeclient/wiki/Source?tm=4
http://code.google.com/p/nativeclient/wiki/Source?tm=4

Native Client Page Content

<html>
<body ...>

<div id="listener">
<embed name="nacl_module"
id="hello_loda"
width=200 height=200
src="hello_loda.nmf" ~=
type="application/x-nacl" />
</div>
</body>
</html>

..... ‘

"main.nexe": {
"x86-64": {
"url": "hello_loda_x86_64.nexe"

2

b
"libdl.so.3c8d1f2e": {

b
"libc.so.3c8d1f2e": {

2
"libpthread.so.3c8d1f2e": {

}
"program": {
"x86-64": {
"url": "lib64/runnable-ld.so"
}

46

End

