The Evolution of Chrome Security
Architecture

Huan Ren
Chromium Contributor
Qihoo 360 Technology Ltd

Introduction to Speaker

e 2011.07 - Present, Qihoo 360 Technology Ltd.
Engineering lead of 360 browser team

e 2007 - 2011, Staff Software Engineer, Google Inc

One of the founding engineers of Google Chrome
team

2004 - 2006, Software Design Engineer
Windows base team, Microsoft

History

Initial version: multi-process, no sandbox
2007: renderer sandbox

2009: extension system

2010: out of process GPU

2010 and ongoing: plug-in sandbox and
pepper

Today’s Chrome Architecture

Browser GPU

Renderer Extension Plug In

Render Sandbox

Token

Calling CreateRestrictedToken with Null SID and all
privileges deleted.

Job

JOB_OBJECT _LIMIT _ACTIVE_PROCESS
JOB_OBJECT UILIMIT_READCLIPBOARD

Alternate desktop
Low integrity level (for Vista+)

Challenge: compatibility

 Two phases

— Bootstrap: initial token

— Lockdown: after LowerToken() is called

* APl Interceptions

Broker
(browser

Policy
Engine

IPC

Renderer

IPC

Policy
Client

Interceptions

Intercepting APIs for compatibility, not for sandboxing.

Challenge: compatibility

* Paint to screen

IPC (shared

Browser Renderer
memory)
cache|< bitmap
WM_PAINT

Window

Render Process Separation

* Process model
— Process per tab
— Process per site
— Process per site instance

* Mandatory process separation

— webUl, extension, and normal render processes

Extension Security Architecture

Plug-in

(not
/ sandboxed)
Browser

Permissions| Extension

(sandboxed Background
as renderer) | page

Extension
host

Message passing

Renderer
(Content
sandboxed) script

R
\

JS sandboxing

JS sandbox: isolated world

Page
Page JS
V8
DOM binding Content
Script 1
Content
Script 2

Privilege separation

* Content script: running in renderer process
associated with page

* Extension core: running in separate process
with privilege to
— Issue cross-origin XMLHTTPRequest
— call extensions APIs
— load plug-ins

* Both sandboxed as renderer process.

Message passing

* One-time request

chrome.extension.sendMessage
chrome.tabs.sendMessage
chrome.extension.onMessage.addListener

* Long-lived connections

chrome.extension.connect
chrome.extension.onConnect.addListener

* Cross-extension messaging

Publishing

Manifest
{

"key": "publicKey",
"permissions”: |
"tabs",
"bookmarks",
"http://*.google.com/",
"unlimitedStorage"],
"plugins": [...],

Common Extension Vulnerabilities

* Network attack
Use <script src> with an HTTP URL

* XSS

eval(), innerHTML, document.write()

function displayAddress(address) {
eval("alert('"" + address + "')");

}

Evaluation of Chrome Extensions

e Study by UC Berkeley, to be presented in
upcoming USENIX Security Symposium 2012

— Manual review of 50 popular and 50 randomly-
selected extensions.

— Found 70 vulnerabilities across 40 extensions.

Evaluation of Chrome Extensions

Vulnerable Component Web Attacker Network Attacker

Core extension 5 50
Content script 3 1
Website 6 14

Vulnerable Popular Random Total
Component

Core extension

Content script 1 2 3
Website 11 6 17
Any 22 18 40

Source: "An Evaluation of the Google Chrome Extension Security
Architecture"

Extension Security V2

Support Content-Security-Policy (CSP)
Manifest V2

script-src 'self'; object-src 'self’

— No inline script

— No eval()

— Load objects only from within package or whitelist

“prevent 96% (49 out of 51) of the core
extension vulnerabilities found. ”

Other Threats on Extensions

 Threat model
— Attack on core extension
e primary design goal
— Malicious extensions
* Chrome sync amplifies the threat

— Websites that have been altered by extensions
 Remain to be studied

e Malicious extensions

— From Chrome 21, only allow installation from web
store.

GPU Process

HWND

Browser ‘)-

process

Shared Memory

‘ Child HWND
Commands ‘)-
Renderer Bitmaps GPU

process Jand arra process

H/w
decodeq

GPU Sandbox

* Token
— WinBuiltinUsersSid,
WinWorldSid,
WinRestrictedCodeSid

* Connected to the interactive desktop

Plug-ins

* NPAPI plug-ins are not sandboxed
— Weakest link on the system

* Mitigations
— Black list
— Click to play

— Built in Flash player
e Fast update
* Sandbox: Vista and later, low integrity mode

Ppapi Plug-ins

Browser
process

Cross platform
System APIs

Plug-in
process

Plug-in

Ppapi

Renderer
process

Locked down
<— asrenderer

process

Current Progress

* Performance improvement
— From sync layout model to async

* Converting native system calls to ppapi
— Flash
— PDF reader

* Chrome 21 beta: Ppapi Flash enabled by
default

Design Principle Review

Least privilege
Privilege separation
Leveraging system security mechanism

Striking a balance between security and
performance, user experience.

Thank You!

