
Would You Need Help to Create

Privacy Policies for Apps?

Le Yu, Chenxiong Qian, Xiapu Luo, Lei Xue

The Hong Kong Polytechnic University

1

Privacy Policy

 Explain what data will be accessed/transmitted/stored/shared/

used by the app as well as the reasons.

 Emphasize what data will not be accessed/transmitted/stored/

shared/used by the app.

2

3

4

Outline

5

 Spotting Issues in Apps’ Privacy Policies

 Generating Privacy Policies Templates for Apps

 Conclusion

Common Faults in Privacy Policies

6

 Incomplete privacy policy

 The privacy policy does not cover an app’s all behaviors of

accessing personal information.

 Example

 Get location information without claiming such behavior in its privacy

policy.

Common Faults in Privacy Policies

7

 Incorrect privacy policy

 An incorrect privacy policy declares that the app will not

collect, use, retain, or disclose personal information, but

the app does.

 Example of legitimate apps with incorrect privacy policy:

 Privacy policy

 “we will not store your real phone number, name and contacts”.

 Code

 Get the contact information and write it to log.

Common Faults in Privacy Policies

8

 Inconsistent privacy policy

 The privacy policy of an app is in conflict with that of its third-

party libs.

 Example

 A popular game app’s privacy policy says:

 “we do not use or collect your precise geographic location.”

 It uses a third-party library, whose privacy policy says:

 “We receive information about Users, their devices, locations and interactions

with the Service primarily in two ways.”

Automatically Checking Privacy Policies

9

APK

Description

What’s new

Privacy policy

Problems

in privacy

policy

PPChecker

10

PPChecker

App’s description Description analysis
Permissions inferred from

description

App’s what’s new What’s new analysis
Permissions inferred from

what’s new

App’s privacy policy

Third-party lib’s

privacy policy

Privacy policy

analysis

Information that app will

collect/retain/disclose

Information that lib will

collect/retain/disclose

App’s APK file Static analysis
Information that app will

use/retain in code

Problems

in privacy

policy

Our tool analyzed 1,680 popular apps downloaded from Google play store and found

that 484 apps (i.e., 28.8%) contain at least one kind of problem.

Description Analysis

 Example:

 “share your location”  ACCESEE_FINE_LOCATION

 “exchange contacts”  READ_CONTACTS

 11 Permissions

 WRITE_EXTERNAL_STORAGE CAMERA

 ACCESS_FINE_LOCATION READ_CONTACTS

 ACCESS_COARSE_LOCATION RECORD_AUDIO

 GET_ACCOUNTS WRITE_SETTINGS

 RECEIVE_BOOT_COMPLETED WRITE_CONTACTS

 READ_CALENDAR

11

App’s description Description analysis
Permissions required

by the app

Description Analysis

 AutoCog:

 Generate a description-to-permission relatedness (DPR).

 ACCESS_FINE_LOCATION (“view”, “map”), (“search”, “parking”)

 Extract (verb, noun) pairs from sentences in description.

 “share your location”  (“share”, “location”)

 Calculate the semantic similarity between (verb, noun) pair and

the DPR model.

 (“search”, “hotel”)  (“find”, “hotel”) (ACCESS_FINE_LOCATION)

12

13

Description Analysis

 Enhanced AutoCog:

 Remove Negative sentences in description.

 “you do not need to create another contact list …”

 Co-reference resolution: Pronouns in description.

 Before: “and meet new friends in person, bringing them from …”

 After: “and meet new friends in person, bringing new friend from …”

14

What’s new Analysis

 Use enhanced AutoCog to process the what’s new

 11 Permissions

 WRITE_EXTERNAL_STORAGE CAMERA

 ACCESS_FINE_LOCATION READ_CONTACTS

 ACCESS_COARSE_LOCATION RECORD_AUDIO

 GET_ACCOUNTS WRITE_SETTINGS

 RECEIVE_BOOT_COMPLETED WRITE_CONTACTS

 READ_CALENDAR

App’s what’s new What’s new analysis
Permissions required

by the app

Privacy Policy Analysis

 How to handle different sentences representing the same

meaning?

 “we will collect your location”.

 “your location information is collected by the app”.

 Key Idea: Summarize the semantic patterns (i.e., sentence

structure) used in privacy policy.

15

App’s privacy policy Privacy policy analysis
Information that the app will

collect/use/retain or disclose

Privacy Policy Analysis

 Bootstrap algorithm: Automatically find pattern in corpus

 Step 1: Seed pattern:

 “[sbj] collect/use/retain/disclose [resource]”.

 Step 2: Find the sentences that contain the same subject,

resource.

 Step 3: Extract pattern from new sentences.

16

Privacy Policy Analysis

 Pattern match: Find sentences that match the patterns.

 Pattern: [sbj] “be allowed to” VP_{collect} [resource].

 Sentence: “We are allowed to collect your location”.

 Negation analysis: Identify negative sentences.

 Information will not be collected/used/retained.

 Method:

 Maintain a list of negation words.

 Check subject: “No information will be collected”.

 Check root-word related words: “We will not collect your location”.

17

18

Privacy Policy Analysis

 Constraint analysis:

 Under which condition the information will be collected/retained.

 Example:

 Category: Registration.

 Extract pre-condition/post-condition: “When you register with or visit the
rockyou sites”.

 Search keywords: “register”.

 Extract resource from sentence.

 Example:

 “Your location will be collected by the app”

 Extract “location”

Static Analysis

 Determine the collected information.

 Check APIs called in code. getLastKnownLocation()  “location”

 Check URIs used in code. content://com.android.contacts  “contact”

 Determine the retained information.

 Static taint analysis

 Traverse the data dependency graph (DDG)

 Source to sink path. getLatitude()  sendTextMessage()

19

App’s APK file Static analysis
Information that the app will

collect/retain in code

20

Static Analysis

 Implementation

 Pre-processing

 Extract dex file from APK file.

 Transform dex file into intermediate language Shimple using soot.

 Construct the Android Property Graph:

 Abstract syntactic trees (ASTs)

 Method call graph (MCG)

 System dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

21

 Android Property Graph (APG):

 Abstract syntactic trees (ASTs)

 Method call graph (MCG)

 System dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

Static Analysis

CellValidateService

onStart() Code()

String1 = “xxx”

Code(String1, String2)

if(String1 != null)

public class CellValidateService extends Service {

 public void onStart(Intent pIntent, int pInt){

 String String1 = “xxx”

 if(String1 != null)

 {

 Code(String1, String2)

 …

 }

 }

 private void Code(String dest, String text){

 }

}

Static Analysis

22

 Android Property Graph:

 Abstract syntactic trees (ASTs)

 Method call graph (MCG)

 System dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

CellValidateService

onStart() Code()

String1 = “xxx”

Code(String1, String2)

if(String1 != null)

public class CellValidateService extends Service {

 public void onStart(Intent pIntent, int pInt){

 String String1 = “xxx”

 if(String1 != null)

 {

 Code(String1, String2)

 …

 }

 }

 private void Code(String dest, String text){

 }

}

23

 Android Property Graph:

 Abstract syntactic trees (ASTs)

 Method call graph (MCG)

 System dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

Static Analysis

public class CellValidateService extends Service {

 public void onStart(Intent pIntent, int pInt){

 String String1 = “xxx”

 if(String1 != null)

 {

 Code(String1, String2)

 …

 }

 }

 private void Code(String dest, String text){

 }

}

CellValidateService

onStart() Code()

String1 = “xxx”

Code(String1, String2)

if(String1 != null)
D[String1]

D[String1]

C[If-true]

24

 Android Property Graph:

 Abstract syntactic trees (ASTs)

 Method call graph (MCG)

 System dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

Static Analysis

public class CellValidateService extends Service {

 public void onStart(Intent pIntent, int pInt){

 String String1 = “xxx”

 if(String1 != null)

 {

 Code(String1, String2)

 …

 }

 }

 private void Code(String des, String tex){

 String3 = des + tex

 String4 = String3 + “;”

 }

}

onStart() Code()

String1 = “xxx”

Code(String1, String2)

if(String1 != null)

String4 = String3 + “;”

String3 = des+tex

Problem Identification

 Incomplete privacy policy

 Contrast description with privacy policy

 The permissions inferred from description vs. the permissions

associated with the information mentioned in privacy policy.

 Contrast what’snew with privacy policy

 The permissions inferred from what’snew vs. the permissions

associated with the information mentioned in privacy policy.

 Contrast code with privacy policy

 The information collected/retained by code vs. the information

mentioned in privacy policy.

 25

Problem Identification

 Incorrect privacy policy

 Contrast description with privacy policy

 Privacy policy declares NOT to use the information whose

permissions can be inferred from description.

 Compare code with privacy policy

 Privacy policy declares NOT to use the information that is

collected/retained by code.

26

Problem Identification

 Inconsistent privacy policy

 Compare an app’s privacy policy with its third-party libs’

privacy policies

 App’s privacy policy declares NOT to

collect/use/retain/disclose certain information.

 Lib privacy policy declares to collect/use/retain/disclose

the information

27

Experimental Result

 Data set:

 1680 apps downloaded from Google Play

 Each app contains APK file, description, what’snew, and privacy policy

 484 apps (i.e., 28.8%) contain at least one kind of problem.

 Some apps have more than one problem.

 Third-party libraries considered:

 Contain privacy policies and class names.

 52 ad libs. Example: Admob, Tapjoy

 9 social libs. Example: Facebook, Twitter

 20 development tools. Example: Flurry analytics, Unity 3D

28

Incomplete Privacy Policy

29

 392 questionable apps

 Example

 Privacy policy

 “Internet technology requires some basic information in order for users of websites or mobile apps to use our

online services smoothly. The basic information should include but not limited to IP addresses and/or domain

names, browser type and settings, language settings, geographical district, operating system, and time/duration of

visit. These data are anonymous and cannot be used to identify the user under general situations. When personal

identifiable information of users are involved or collected in the Federation’s websites or mobile apps, users will be

prompted to give explicit alert of the collection so as to give consent.”

 Code:

30

Incomplete Privacy Policy

 Number of incomplete privacy policies for different kinds of

personal information.

Incorrect Privacy Policy

31

 4 questionable apps.

 Example 1
 Privacy policy

 “we are not collecting your data of birth, phone number, name or other personal
information, nor those of your contact.”

 Code
 Collect contact information.

 Example 2
 Ambiguous privacy policy

 “we will not store your real phone number, name and contacts”

 “Users locations would not be transmitted out from the app”.

 Code
 They get the information and write to log file.

 Note: third-party libs in the app or colluded apps can access the information in
log file; attackers could use adb to access the log; apps in a rooted smartphone
could access the log.

Inconsistent Privacy Policy

32

 111 questionable apps

 Example
 App’s privacy policy

 “we do not collect information such as your real name, address, or phone
number.”

 Third-party lib’s privacy policy
 “we may collect device specific information (such as ... mobile network

information including phone number)”.

 Example
 App’s privacy policy

 “We don’t share your personal information with any third parties”.

 Third-party lib’s privacy policy
 “We may share certain types of personal information with third parties.”

Checking 21 popular apps in Taiwan

 Three incomplete privacy policies

 One app missed installed app list.

 One app missed location.

 One app missed account.

 One inconsistent privacy policy

 One app declares “we do not share

personal information with third party

advertisers for their direct marketing

purpose”.

 Third party lib declares “XXX may also

share your personal information with

third parties”

33

Problems in Third-Party Libs’ Privacy

Policies

34

 52 ad libs, 9 social libs, and 20 development tools

 5 third-party libs have incomplete privacy policies.

 3 libs missed device ID

 2 libs missed IP address

 1 lib missed location

 1 lib missed sim card number

 Example

 A lib will collect location information according to its code.

 getLatitude()

 getLongitude()

 However, its privacy policy does not mention such behavior.

Outline

35

 Spotting Issues in Apps’ Privacy Policies

 Generating Privacy Policies Templates for Apps

 Conclusion

Writing Privacy Policy

36

 Is it difficult?

 No, because

 There are many guidelines and training courses.

 Free online generators.

 …

 Yes, because the author of a privacy policy may

 not well understand the app’s source code.

 not be familiar with the precise operation of each API used.

 not know the internals of the integrated third-party libraries.

 …

37

AutoPPG: Automatically Generating Privacy

Policy Templates

Our tool takes in an apk file and then generate a correct and readable privacy policy template

for it.

Signature and descriptions of

selected APIs
Document analysis

Information that each

API will access

APK

Post-process

Personal information;

User of personal information;

Condition for using such information;

Information retention

Privacy policy

generator

Static analysis

Privacy policy templates

Document Analysis

 Syntactic analysis on the description of the API.

 getRunningAppProcesses(): “Returns a list of application processes that are

running on the device”.

38

Signature and descriptions of

selected APIs
Document analysis

Information that each

API will access

Document Analysis

 Extract noun phrase from method name.
 getRunningAppProcesses  Running App Process

 Extract noun phrase from class name.
 Android.hardware.Camera  Camera

 Extract private information.
 Compare the object in description with method name/class name.

 If the object cannot cover method name/class name, add additional

information.

 “list” “Running App Process”  Low similarity

 “list” + “of application processes”

39

Static Analysis

 Extract Dex file from APK file (Unpacking if need)

 Construct Android Property Graph:

 method call graph (MCG)

 system dependency graph (SDG)

 Inter-procedure control flow graph (ICFG)

 Abstract syntactic trees (ASTs)

 40

APK

Personal information;

User of personal information;

Condition for using such information;

Information retention

Static analysis

Static Analysis

 Identify the APIs/URIs used in code.

 Get information through API

 Get information through URI

 Reachability analysis to remove infeasible code.

 Infeasible code will not be triggered.

 Traversal the method call graph (MCG).

 Two kinds of entry points

 Lifecycle methods: onCreate()

 UI callbacks: onClick()

41

42

Static Analysis

 Identify the conditions under which these APIs/URIs are used.

 Device specific information.

 Language: Locale.getDisplayLanguage()

 OS version: android.os.Build.VERSION

 Screen size: Display.getSize()

 Natural environment requirement.

 Time: Date.getHour()

 Location: Location.getLatitude()

 Hardware events.

 Press BACK and HOME keys

 Lifecycle callback: onPause(), onResume()

43

Static Analysis

 Identify the conditions under which these APIs/URIs are used.

 UI events.

 Widget: View.Button

 Callback: onClick()

 System events.

 Broadcast receiver

 Intent: BOOT_COMPLETED

 Device status.

 Current status of current device

 API: PowerManager.isScreenOn()

44

Static Analysis

 Identify the user of these APIs/URIs.

 The app itself or third-party lib.

 Check if the information is stored in file/log, sent out through
internet/SMS.

 Static taint analysis on data dependency graph (DDG).

 Source to sink path.

Privacy Policy Generator

 Template of each generated sentence:

 Sentence = [pre-condition] subject verb object [post-condition]

 Subject: User of the sensitive information.

 Verb: Analyse the data flow to determine verb.

 URIs:

 ContentResolver.update()  Verb: update

 ContentResolver.query()  Verb: read

 APIs:

 External storage: FileOutputstream.write() Verb: write

 Other APIs: manually define verbs

45

46

Privacy Policy Generator
 Template of each generated sentence:

 Sentence = [pre-condition] subject verb object [post-condition]

 Object: Private information extracted from official description.

 Pre-condition and post-condition:

 Six kinds of condition identified in code.

 UI events: add “when you press the button” as condition.

 Information retained or not.

 If the information is retained, we add additional sentence after it.

 “This information will be retained in file/log”

 “This information will be transferred out via SMS/internet/bluetooth”

Post-Process

 Remove duplicate sentences.

 Different APIs get the same information.

 getAccounts() and getAccountsByType().

 The private information obtained by one API can be

covered by another API.

 getLatitude() and getLastKnownLocation().

47

Post-Process

 Example

 App calls getLastKnownLocation(), getLatitude(), and getLongitude() in

the same method.

 Only one sentence will be generated.

 “We would use location (including, latitude and longitude).”

48

Post-Process

 Change the order of the remaining sentences.

Sensitive behaviors (e.g., read contacts/SMS) are displayed first.

 Private information risk rank list:

 1 contact

 2 SMS

 3 call log

 4 browser history

 5 calendar

 6 device ID

 7 audio

 8 camera

 9 location

 …

49

50

Evaluation

51

 Comparing the coverage of the privacy policies generated by

our tool and that of existing privacy policies.

 “N”: privacy policies generated by our tool, “O”: existing privacy policies

 Existing privacy policies may be either incomplete or imprecise.

Outline

52

 Spotting Issues in Apps’ Privacy Policies

 Generating Privacy Policies Templates for Apps

 Conclusion

Suggestions

 For normal users, please read the privacy policy before

installing an app if it is available.

 For app developers, please provide clear privacy policies

following the suggestions/guidelines, get familiar with the

APIs/third-party libs used, and avoid over-claiming

permissions.

 For companies that outsource the app development,

please check the code and the privacy policy carefully

before releasing the app.

53

Conclusion

54

 Correct and clear privacy policies are very useful to the apps.

 Identify three kinds of problems in privacy policies, and find

many existing privacy policies have at least one problem.

 Develop PPChecker to automatically identify problems in an

app’s privacy policy by analyzing information from multiple

sources.

 Develop AutoPPG to automatically generate privacy policy

templates for apps without the need of source codes.

55

