Winnti Polymorphism

Takahiro Haruyama

Symantec

Who am I?

» Takahiro Haruyama (@cci_forensics)

* Reverse Engineer at Symantec

— Managed Adversary and Threat Intelligence (MATI)

* https://www.symantec.com/services/cyber-security-services/

deepsight-intelligence/adversary

* Speaker

— BlackHat Briefings USA/EU/Asia, SANS DFIR Summit,
CEIC, DFRWS EU, SECURE, FIRST, RSA Conference JP,

etc...

Motivation

Winnti is malware used by Chinese threat actor for

cybercrime and cyber espionage since 2009

Kaspersky and Novetta published good white papers
about Winnti [1] [2]

Winnti is still active and changing

— Variants whose behavior is different from past reports

— Targets except game and pharmaceutical industries

I'd like to fill the gaps

Agenda

* Winnti Components and Binaries

* Getting Target Information from Winnti

Samples

* Wrap-up

& NOVETTA

Initial Winnti analysis WINNTI
against Vietham game | ANALYSIS
company

The malware, designed by human, often inhabits the servers {

Winnti Components and Binaries

Winnti Execution Flow

memory-resident

3. load or omitted

& run

Dropper 1. drop Service

with config
4. decrypt

& run

6. connect
to C2

\5.Iiad
Worker Q
with config

(encrypted)

rootkit

C2 server drivers

New Findings

memory-resident

3. load or omitted

& run

with config
4. decrypt E = . :

& run

connected
rOOtkit through
drivers covert
channel

with config

C2 server (encrypted)

Dropper Component

* extract other components from inline DES-protected blob

— the dropped components are
* service and worker

* additionally engine with other malware family (but that is rare)

— the password is passed from command line argument

— Some samples add dropper’s configuration into the overlays of the

components

* run service component

— [rundll32.exe "%s", \w+ %s/

— the export function name often changes

* Install, DIgProc, gzopen_r, Init, sql_init, sqlite3_backup_deinit, etc...

Service Component

* load engine component from inline blob

— the values in PE header are eliminated

* e.g., MZ/PE signatures, machine architecture,
NumberOfRvaAndSizes, etc...

* call engine’s export functions

— some variants use the APl hashes

* e.g., 0x0C148Bo3 = "Install”, 0x3013465F = "DeleteF"

def calculate_hash(name):
n = [ord(x) for x in namel
h =20
for i in range(len(n)):
h =n[i] + 131 % h
return h & Ox7FFFFFFF

Engine Component

memory-resident

— some samples are saved as files with the same

encryption of worker component

export function names

— Install, DeleteF, and Workmain

try to bypass UAC dialog then create service

decrypt/run worker component

— PE header values eliminated, 1 byte xor & nibble swap

Worker Component

» export function names
— work_start, work_end

* plugin management

— the plugins are cached on disk or memory-resident

* supported C2 protocols
— TCP = header + LZMA-compressed payload
— HTTP, HTTPS = zlib-compressed payload as POST data
— SMTP

SMTP Worker Component

* Some worker components support SMTP

— the config contains email addresses and more obfuscated

(incremental xor + dword xor)

e Public code is reused

— The old code looks copied from PRC-based Mandarin-language
programming and code sharing forum [3]
* The hard-coded sender email and password are "attach_111@sina.com" and
"test123456"
— The new code looks similar to the one distributed in Code Project [4]

* STARTTLS is newly supported to encrypt the SMTP traffic

SMTP Worker Component (Cont.)

struct struct_config_partl

{ .
int field 0_xor key! for decrypting each member
int Tiew _4 1mmi;
SYSTEMTIME field_8_timestamp;
int field_18_immFh; : :
int field 1C_immi: QQMail [5] acco.unt is used
int field_20_immo; for sending
char field 24 id?[641: // xx
char field_64_sender_QQMailID[64]; // 827762398
char field A4 sender password[64]: // zkxgowarprrwbdjg

char field_E4_working_folder[256]; // c:\wen
struct_recipient_emails field_1E4_recipient_emails;
int field_6E8_fn_check_explorer_process;
int field_6EC;

|

struct struct_recipient_emails
it _ recipient email addresses
__int16 field_1E4_null;
__int16 field 1E6 num of recipients: // 2
char field_1E8_recipient_email[256]; // testattach126@126.com
char field 2E8 recipient email[256]; // attach_111@sina.com
char field_3E8 _blob1[760];
int field_6EQ;
int field_6E4;

VSECVariant [6]

* Two main differences compared with Novetta variant

[2]
— no engine component

* service component directly calls worker component

— worker’s export function name is "DllUnregisterServer”

* takes immediate values according to the functions

— e.g., 0x201401 = delete file, 0x201402 = dll/code injection, 0x201404 =

run inline main DLL

* recently more active than Novetta variant?

VSEC Variant (Cont.)

whemcomn.dat. ...

* unique persistence

worker — Some samples modify IAT
of legitimate windows dlls

to load service component

infected

— the tar Il namei
Windows dl| the target dii name is

included in the
configuration

* e.g., wbemcomn.dll,

.« patch.it=zaolk

.com: 443 service loadperf.dll

Winnti as a Loader

struct XSetting

{

XHeader field_@_xheader; Some englne com ponents
int field_8_flags?;
int field_C_timer_connection_interval;

int field_10_timer_sleep?; embeds other malware

char field_14 active_time_table[672];

int field_2B4_customDNS1; " I

int field_2B8_customDNS2; famlly ||ke GhOSt and

int field_2BC_customDNS3; P| X

int field_2C0_customDNS4; U

C2Setting field_2C4_C2_hostnamel; g

C2Setting field_308_C2_hostname2; _)
C2Setting field_34C_C2_hostname3; — the conﬁgura’uon IS
C2Setting field_390_C2_hostname4;

char field_3D4_C2Setting_URL1[128]; . .

char field_454_C2Setting URL2[128]; encrypted by Winnti and
char field_4D4_C2Setting_URL3[128]; .

char field_554_C2Setting_URL4[128]; the malware algorithm
struc_ProxySettings field_5D4_proxySettingl;

struc_ProxySettings field_698_proxySetting2;

struc_ProxySettings field_75C_proxySetting3; — the COI’TFIg members are

struc_ProxySettings field_820_proxySetting4; h | ﬁ
int1h _field 8F4 install_ fonlder nath[25A1: t e malware s eCI C +

char field_AE4 winnti_service _comp_ name|32| // ne p

char field_B@4_winnti_engine_comp_name[32]; // ne . . .

char field_B24_http_location[256]; // new, "Http L Winnti strings

char field_C24_network_config_and 10cat10n|256| ki
‘ 2 Winnti-related members

Related Kernel Drivers

e Kernel rootkit drivers are included in worker
components

— hiding TCP connections

* The same driver is also used by Derusbi [7]

— making covert channels with other client machines

* The behavior is similar to WFP callout driver of Derusbi

server variant [8] but the implementation is different

Related Kernel Drivers (Cont.)

* The rootkit hooks TCPIP Network Device Interface Specification
(NDIS) protocol handlers

— intercepts incoming TCP packets then forward to worker DLL

dword?2 =0 && dword4 == (dword1 ~ dword3) << 0x10 A
LY e Gl 4 dword 1| dword 2 | dword 3 | dword 4 | E

(2) save TCP & packet Worker DLL
special format buffers with config

packets (3) read & write

NDIS_OPEN_BLOCK o user buffer/”
\\Device\\Null

Client ~ ReceiveNetBufferLists and

Malware
ad <~
. NDIS_PROTOCOL_BLOCK ~ ~-_(0) install hooks

install hooks again -
everytime net config BindAdapterHandlerEx and =
changes

the rootkit driver .
TCPIP protocol handlers (DKOM used, names/paths nullfied)

Related Attack Tools

* bootkit found by Kaspersky when tracking Winnti activity [9]

* ‘“skeleton key” to patch on avictim's AD domain controllers [10]

* custom password dump tool (exe or dll)
— Some samples are protected by VMProtect or unique xor or AES

— the same API hash calculation algorithm used (function name = “"main_exp”)

def decrypt(enc):
dec = [ord(x) for x in enc]
key = dec[0]
for i in range(1, len(dec)):
tmp = (key + i) & Oxff
dec[i] = (((tmp ~ dec[i]) >> 4) + ((tmp ~ dec[i]) << 4)) & Oxff
dec = [chr(x) for x in dec]
return "".join(dec)

* PE loader

— decrypt and run a file specified by the command line argument
* *((_BYTE *)buf_for_cmdline_file + offset) A= 7 * offset + q0;

includes two drivers compiled on August 22 and September 4, 2014. The sample has an encrypted
configuration block placed in overlay. This block may include a tag for the sample — usually it is a campaign 1D
or victim ID/name. This time the operators put such tag in the configuration and it turned out to be the name
of the well-known global pharmaceutical company headquartered in Europe:

One of the mentioned drivers (a known, malicious Winnti network rootkit) was signed with a stolen
certificate of a division of a huge Japanese conglomerate. Although this division is involved in
microelectronics manufacturing, other business directions of the conglomerate include development and
production of drugs as well as medical equipment.

from Kaspersky blog [11]

Getting Target Information from
Winnti Samples

Two Sources about the Targets

* campaign ID from configuration data

— target organization/country name

e stolen certificate from rootkit drivers

— already-compromised target name

* | checked over 170 Winnti samples

— Which industry is targeted by the actor, except game

and pharma ones?

Extraction Strategy

regularly collect samples from VT/Symc by using detection name or yara

rules
try to crack the DES password if the sample is dropper component
— orjust decrypt the config if possible
run config/worker decoder for service/worker components
— campaign IDs are included in worker rather than service
extract drivers from worker components then check the certificates
exclude the following information

— not identifiable campaign ID (e.g., "a1031066", “taka1100")

— already-known information by public blogs/papers

Extraction Strategy (Cont.)

e automation

— config/worker decoder (stand-alone)
 decrypt config data and worker component if detected

* additionally decrypt for PlugX loader or SMTP worker variants

— dropper password brute force script (IDAPython or stand-alone)

samples/19¢c2417eb91c879f342950e491917024
header signature: '6666666666666666'
config size in overlay: 0x314

strings in config:

wbemcomn . dat

wbemcomn.dl1l

wbemcomn . DL_

:patch.itsaol.com:443

160113

' PV
decrypted worker or engine binary save in samples/19c2417e

Extraction Strategy (Cont.)

* double-check campaign IDs by using VT submission metadata

— the company has its HQ or branch office in the submitted country/
city?
* e.g., thelD means 2 possible companies in different industries

— The submission city helps to identify the company

. tmp/0d5238¢c55b017¢15368133f98a8adb19
header signature: '6666666066666666'
config size in overlay: @x30c

{u'date': u'2016-02-11 09:01:17",

u'name': u'NtSvc.dat’,
: ') u'source': {u'city': ulseongnam-sif,
strings in config: u'city-latlong——u'a971ebb8’,
0212 u'country’: uf'KR',
- u'id': u'815723/9",

KR u'ip': u'81572379',

eode . coderprojcet.com: 80 u'region': u'41'}}

£ e\l nia e\ ADRMTAIT 1\ ANl o\ L T\ T i\

decrypted config VT submission metadata 2,

Result about Campaign ID

* only 27 % samples contained configs ®

— Most of them are service components

* service components usually contains just path information

— difficult to collect dropper/worker components by
detection name

* Yara retro-hunt can search samples within only 3 weeks

* 19 unique campaign IDs found

— 12 IDs were identifiable and not open

Result about Campaign ID (Cont.)

Russia [Moscow

China /Shenzhen

South Korea / Seongnam-si
South Korea / Seongnam-si
South Korea / Seongnam-si
Japan [Chiyoda

Vietnam / Hanoi

South Korea / Seoul

South Korea / Seongnam-si
USA / Bellevue

Australia [Adelaide

USA / Milpitas

Internet Information Provider? (typo)

University? (not sure)
Game

Game

Game

Chemicals

Internet Information Provider, E-
commerce, Game

Investment Management Firm
Anti-Virus Software

Game

IT, Electronics

Telecommunications

Result about Certificate

* 12 unique certificates found but most of them are known in
[1] [22]
4 certificates are not open

— One of them is signed by an electronics company in Taiwan

— The others are certificates of chinese companies

* "Guangxi Nanning Shengtai‘'an E-Business Development CO.LTD",
"BEIJING KUNLUN ONLINE NETWORK TECH CO.,LTD", "R &R L & 3

LR BEREEAR"
— I'm not sure if they were stolen or not

* Oneis a primary distributor of unwanted software? [13]

Wrap-up

Winnti malware is polymorphic, but

— The variants and tools have common codes

* e.g., config/binary encryption, APl hash calculation

— Some driver implementations are identical or similar to Derusbi’s ones

Today Winnti threat actor(s?) targets at chemical, e-commerce,
investment management firm, electronics and

telecommunications companies

— Game companies are still targeted

Symantec telemetry shows they are just a little bit of targets ®

Reference

http://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/winnti-more-than-just-a-
game-130410.pdf
https://www.novetta.com/wp-content/uploads/2015/04/novetta_winntianalysis.pdf
http://blog.csdn.net/lishuhuakai/article/details/27852009
http://www.codeproject.com/Articles/28806/SMTP-Client

https://en.mail.qq.com/
http://blog.vsec.com.vn/apt/initial-winnti-analysis-against-vietnam-game-company.html
https://assets.documentcloud.org/documents/2084641/crowdstrike-deep-panda-report.pdf
https://www.novetta.com/wp-content/uploads/2014/11/Derusbi.pdf
https://securelist.com/analysis/publications/72275/i-am-hdroot-part-1/
https://www.symantec.com/connect/blogs/backdoorwinnti-attackers-have-skeleton-their-closet
https://securelist.com/blog/incidents/70991/games-are-over/
http://blog.airbuscybersecurity.com/post/2015/11/Newcomers-in-the-Derusbi-family

https://www.herdprotect.com/signer-guangxi-nanning-shengtaian-e-business-development-

coltd-1ebof4d821e239ba81b3d10e61b7615b.aspx

