

Adversarial Machine Learning And Several Countermeasures

Trend Micro ch0upi miaoski 7 Dec 2017

ch0upi

- Staff engineer in Trend Micro
- Machine Learning + Data Analysis
- Threat intelligence services
- NIPS
- KDDCup 2014 + KDDCup 2016: Top10
- GoTrend: 6th in UEC Cup 2015

miaoski

- Senior threat researcher in Trend Micro
- Threat intelligence
- Smart City
- SDR
- Arduino + RPi makers
- 貓奴

Outline

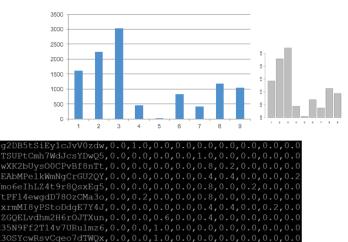
- Cheating machine learning?
- Attacking theories and practices
- Countermeasures
- Conclusion

CHEAT
MACHINE LEARNING MODELS

We Were Good Guys ...

Evaluation of Fruit

Accuracy: (9+9)/20 = 90%



INVIDIA ACCELERATED COMPUTING

Downloads

Training

Ecosystem

PARALLEL FORALL

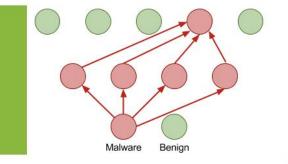
Features

Pro Tips

Spotlights

CUDACasts

← Previous



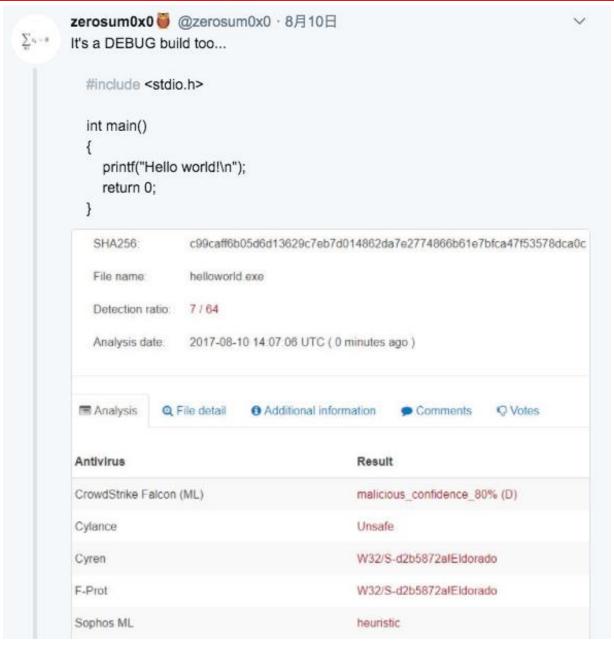
Malware Detection in Executables Using Neural Networks

Share: 🔰 🍯 f 🚱 in 🖾

Posted on November 21, 2017 by Jon Barker 1 Comment Tagged Deep Learning, Malware Detection

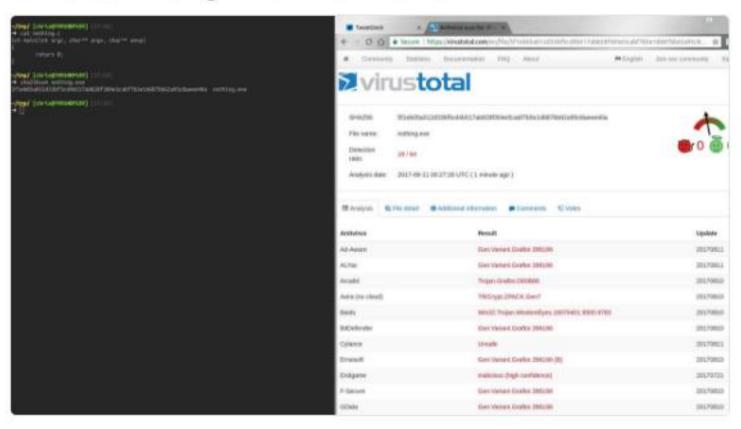
The detection of malicious software (malware) is an increasingly important cyber security problem for all of society. Single incidences of malware can cause millions of dollars in damage. The current generation of anti-virus and malware detection products

typically use a signature based approach



返信先: @rantybenさん、@Vissさん、@zerosum0x0さん

This is insane! You don't even need printf()! What's wrong with the world?



CSOs Explained

SALTED HASH- TOP SECURITY NEWS

By Steve Ragan, Senior Staff Writer, CSO | AUG 16, 2017 4:00 AM PT

Fundamental security insight to help you minimize risk and protect your organization

NEWS

Here's why the scanners on VirusTotal flagged Hello World as harmful

CrowdStrike, Cylance, Endgame and others flagged Hello World as unsafe or malicious

But Still ...

18/66

18 engines detected this file

SHA-256 aca55bce947a49f5073b9e860789f0f2b3cb147972e18178143ffaf6790160c4

File name 6d130077084e0b1f4542b08f92736df0.virobj

File size 99.69 KB

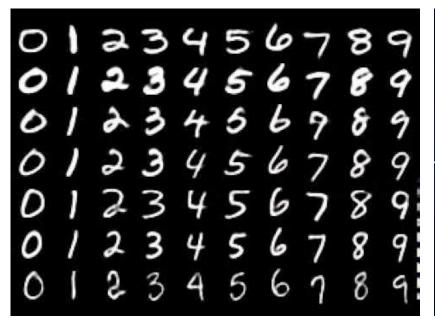
Last analysis 2017-10-30 16:57:17 UTC

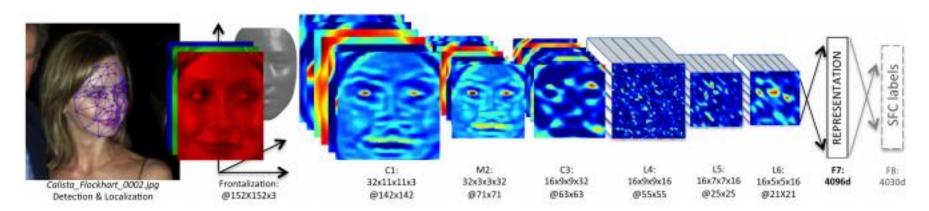
		Community			
AegisLab	▲ Virus	s.W32.Evo.Gen!c	Avast	A	Win32:Evo-gen [Susp]
AVG	⚠ Win3	32:Evo-gen [Susp]	Avira	A	TR/Crypt.ZPACK.Gen7
CrowdStrike Falcon	▲ malio	icious_confidence_80% (W)	Cylance	A	Unsafe
Endgame	▲ malio	icious (moderate confidence)	Jiangmin	A	Backdoor.Generic.zrm
McAfee	Arter	mis!6D130077084E	McAfee-GW-Edition	A	Artemis
nProtect	▲ Troja	an/W32.Agent.102082	Palo Alto Networks	A	generic.ml
Qihoo-360	⚠ Win3	32/Trojan.af4	SentinelOne	A	static engine - malicious
Sophos ML	heuri	ristic	Symantec	A	Trojan.Gen.2

Rescan Makes It Worse

Compiler	Hello World (no debug)	Hello World (debug)	Nothing (no debug)	Nothing (debug)
Visual Studio 2017	Cylance, Jiangmin	Cylance, Cyren, F-Prot, Sophos ML, SentinelOne Static ML	Cylance, Jiangmin	Cylance, Cyren, F-Prot, Sophos ML, SentinelOne Static ML
MingW64	Good	Good	Good	Good
Cygwin x86_64	Baidu, Cylance	Baidu	Baidu, Cylance	Baidu

ML is Prosperous





Taigman et al. (2014) DeepFace: Closing the Gap to Human-Level Performance in Face Verification

ML Drives

https://www.tesla.com/sites/default/files/images/videos/tesla_autopilot_2_video.jpg

Machine learning has its **particular** vulnerabilities.

Research Prediction Competition

NIPS 2017: Targeted Adversarial Attack

Develop an adversarial attack that causes image classifiers to predict a specific target class

Google Brain - 65 teams - a month ago

Research Prediction Competition

NIPS 2017: Non-targeted Adversarial Attack

Imperceptibly transform images in ways that fool classification models

Google Brain · 91 teams · a month ago

Research Prediction Competition

NIPS 2017: Defense Against Adversarial Attack

Create an image classifier that is robust to adversarial attacks

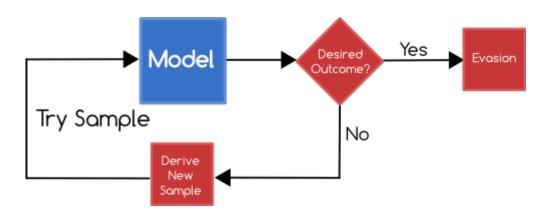
Google Brain - 107 teams - a month ago

THEORIES AND PRACTICES

Methodology

- Evasion
 - Black box
 - White box
- Model stealing
- Poisoning

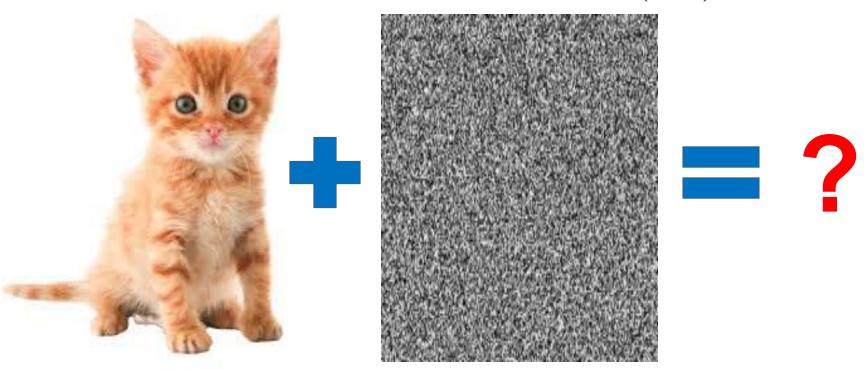
- Evasion
 - Black box
 - Random
 - Evolutionary algorithms (GA)
 - White box
- Model stealing
- Poisoning

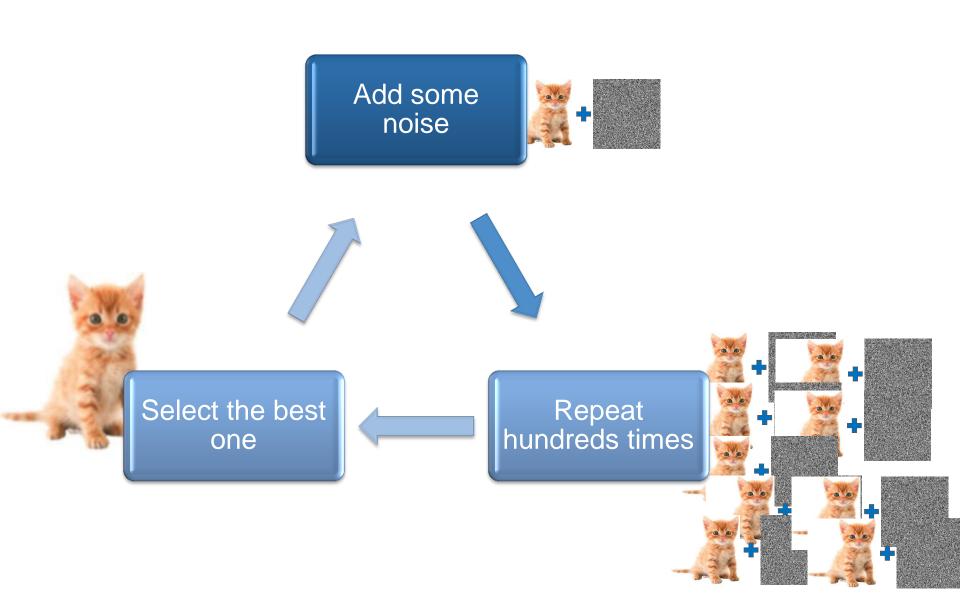


- No model
- Only predict interface & result

Add some white noise?

random.normalvariate(0, 5)

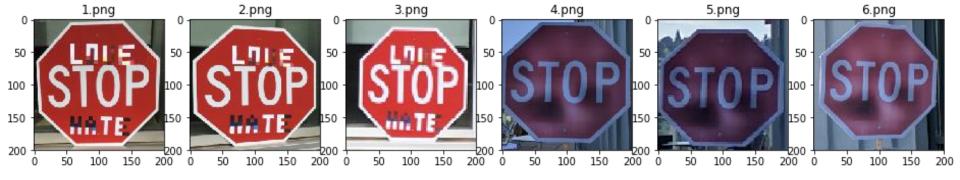




Black Box – Random – STOP

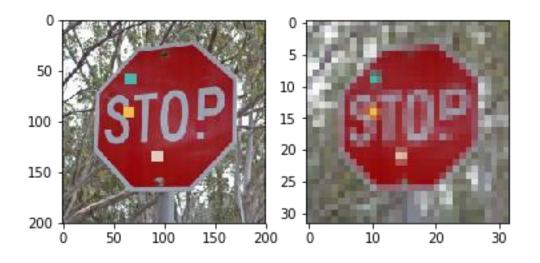
- Inspired by Evtimov et al. (2017)
- We use iterative random attack instead
- Difficult: STOP sign → something else

Evtimov et al. (2017) → 80 KM/h



Hacked in iteration 5
Predicted Labels: 39 ['Keep left']
(confidence = 73%)

- 39 Keep left
- 14 Stop
- 13 Yield
 - 6 End of speed limit (80km/h)
- 41 End of no passing

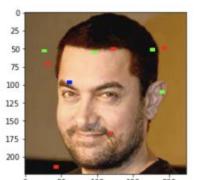


Black Box – Random – Faces

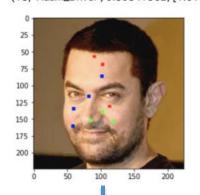
VGG Face and @mzaradzki

N	Square Size	Success?
10	4x4	Adam Driver
10	4x3	Adam Driver
10	3x3	Adam Driver
10	2x2	Adam Driver (difficult)
	Cat face	Failed
10	1x1	Failed*

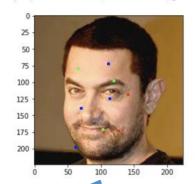
(18, 'Adam_Driver', 0.38409981, [1.013654 Hit at iteration #47



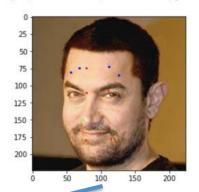
Hit at iteration #47 (18, 'Adam_Driver', 0.80841362, [1.018



Hit at iteration #56 (18, 'Adam_Driver', 0.49913165, [9.55]



(18, 'Adam_Driver', 0.49598065, [4.59]



Adam Driver

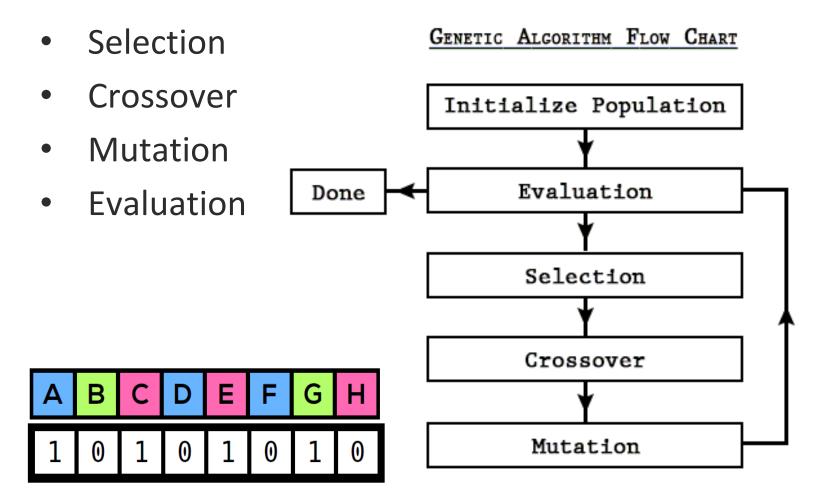
Aamir Khan

Black Box – Genetic Algorithm

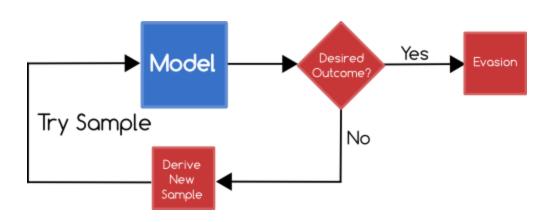
Effective random search

- Inspired by the process of natural selection
- Belongs to evolutionary algorithms (EA)
- Solving optimization and search problems

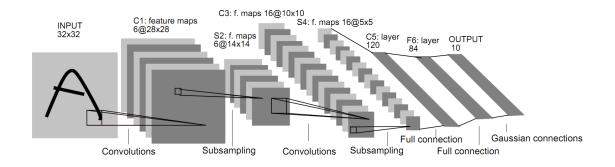
Black Box – Genetic Algorithm

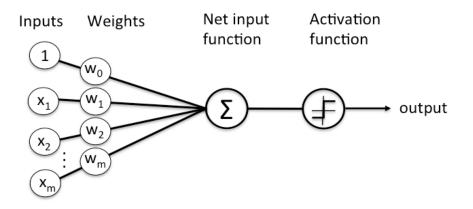


- Evasion
 - Black box
 - White box
 - FGSM
 - One-step target class
- Model stealing
- Poisoning



- With all model detail
- DNN architecture, weights





Fast Gradient Sign Method

- simple and computationally efficient
- non-target attack
- Goodfellow et al. (2014)

$$X^{adv} = X + \epsilon sign(\nabla_X J(X, y_{true}))$$

X^{adv}: Adversarial image

X: Original imageε: perturbation level

 $\nabla_X J(X, y)$: gradient

Attack a Linear Model

Lets fool a binary linear classifier:

class 1 score before:

$$-2+1+3+2+2-2+1-4-5+1=-3$$

$$-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2$$

=> probability of class 1 is now
$$1/(1+e^{-(2)}) = 0.88$$

i.e. we improved the class 1 probability from 5% to 88%

 $P(y = 1 \mid x; w, b) = \frac{1}{1 + e^{-(w^T x + b)}} = \sigma(w^T x + b)$

Fast gradient sign method (non-target, one step)

$$X^{adv} = X + \epsilon \operatorname{sign}(\nabla_X J(X, y_{true}))$$

One-step target class methods (target, one step)

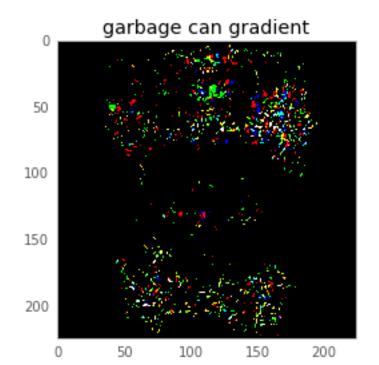
$$X^{adv} = X - \epsilon \operatorname{sign}(\nabla_X J(X, y_{target}))$$

Basic iterative method (non-target, multiple steps)

$$\boldsymbol{X}_{0}^{adv} = \boldsymbol{X}, \quad \boldsymbol{X}_{N+1}^{adv} = Clip_{\boldsymbol{X},\epsilon} \Big\{ \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \big(\nabla_{\boldsymbol{X}} J(\boldsymbol{X}_{N}^{adv}, y_{true}) \big) \Big\}$$

• Iterative least-likely class method (target, multiple steps) $X_0^{adv} = X$, $X_{N+1}^{adv} = Clip_{X,\epsilon} \{X_N^{adv} - \alpha \operatorname{sign}(\nabla_X J(X_N^{adv}, y_{LL}))\}$

White Box – FGSM – Trash Can



label: 412 (ashcan, trash can), certainty: 37.47%

label: 899 (water jug), certainty: 10.85%

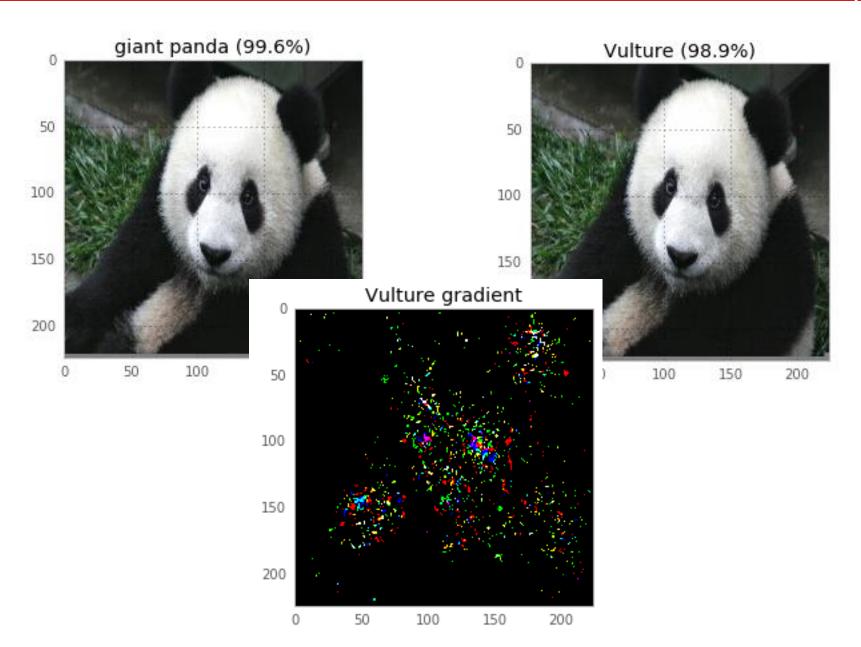
label: 503 (cocktail shaker), certainty: 7.98%

label: 412 (ashcan, trash can), certainty: 87.68%

label: 463 (bucket, pail), certainty: 3.08%

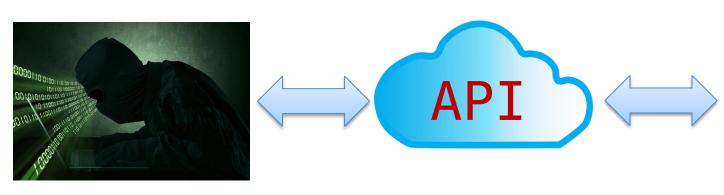
_ = predict(garbage_data + 0.75 * np.sign(grad), n_preds=2)

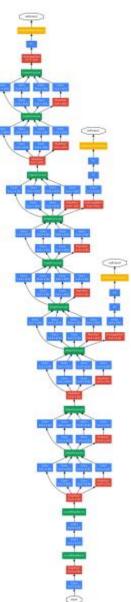
White Box – One-Step Target



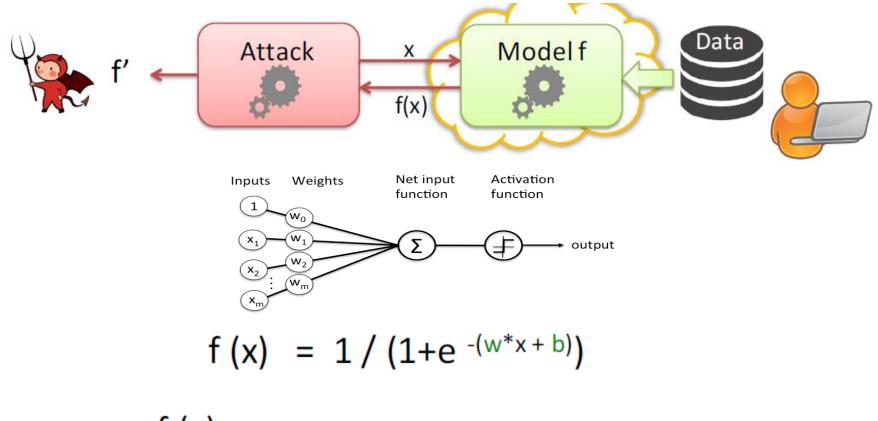
Methodology

- Evasion
 - Black box
 - White box
- Model stealing
- Poisoning





Model Stealing



$$ln(\frac{f(x)}{1-f(x)}) = w*x + b \leftarrow$$
 Linear equation in n+1 unknowns w,b

Model Stealing

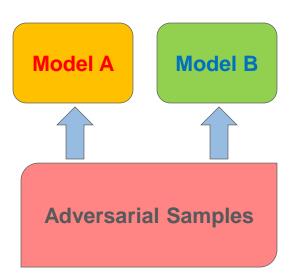
- Model is data
- Model is asset

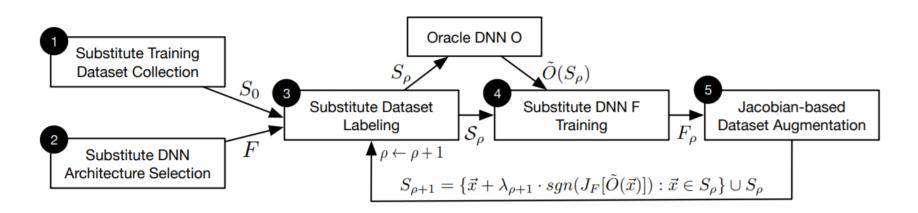
- Train a local DNN for Black box attack
- Data privacy

Model Stealing: Adversarial Attack

Transferability Property

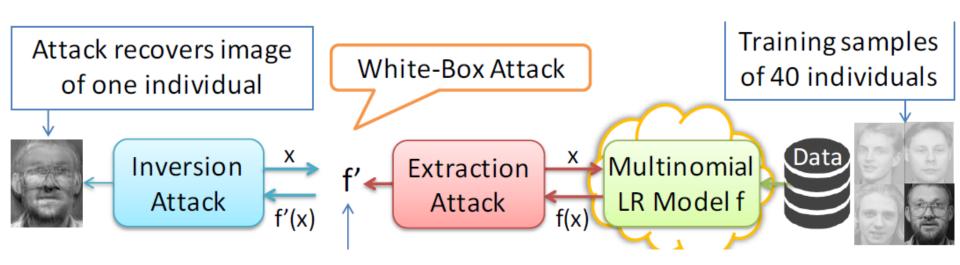
- Train a local model for attack
- Effective data augmentation





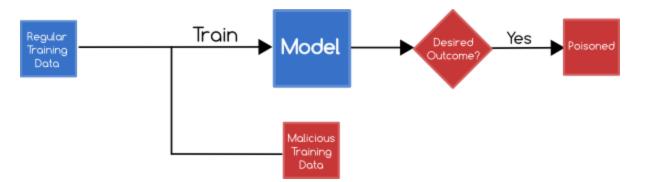
Model Stealing: Data Privacy

How to re-build your face if we have the model?



Methodology

- Evasion
 - Black box
 - White box
- Model stealing
- Poisoning



Poison Attack

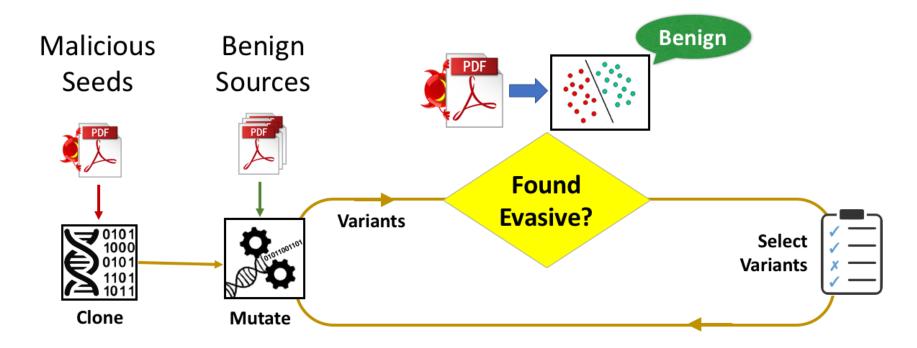
- Crowdsourcing
 - Amazon Mechanical turk
 - Mis-labeling
- Online training
 - Microsoft chatbot: Tay
 - User feedback

Real World Adversarial

- Evading Against PDF ML
- Auto-pilot cars
- Access control w/ face recognition

Evading Against PDF ML

- Genetic algorithm to generate adversarial sample
- Sandbox to ensure malicious behavior kept



COUNTERMEASURES

Countermeasures

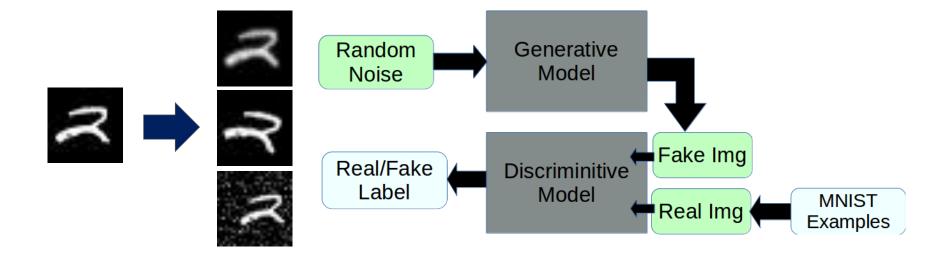
- Ensemble & Stacking
- Retrained model
- Denoiser
- Prevent Model Leakage

Ensemble & Stacking

Prediction Layer protection **Xgboost** Layer 3 SVM LR Layer 2 CNN Layer 1 **RNN** LDA **Input Data**

Retrained Models

- Distortion
 - Retrain with noisy sample
- Randomization layer in DNN (NIPS 2nd)
- Generative Adversarial Networks (GAN)



- Use denoise technologies from image processing
- Train a DNN denoiser to reduce the noise

Noisy image

Denoised image

Prevent Model Leakage

- Avoid Model stealing
- Increase the challenge of black box attack

- Keep some info secret or add some noise
- Randomization and disinformation
- Adversarial sample detection

Conclusion

Know the limitations and weakness of your model

- Integrate adversarial machine learning into product development cycle
 - Improve ML
 - QA process

 Trend Micro is working on bypassing anti-virus with ML in order to make our product robust

References

- Evtimov et al. (2017) Robust Physical-World Attacks on Deep Learning Models
- https://iotsecurity.eecs.umich.edu/#roadsigns
- Nguyen et al. (2015) Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. IEEE CVPR '15.
- Kurakin A., Goodfellow I.J., Bengio S. (2017) Adversarial Examples in the Physical World.
- https://github.com/tomaszkacmajor/CarND-Traffic-Sign-Classifier-P2
- https://aboveintelligent.com/face-recognition-with-keras-and-opencv-2baf2a83b799
- https://github.com/davidsandberg/facenet
- http://www.vlfeat.org/matconvnet/pretrained/#face-recognition
- https://github.com/mzaradzki/neuralnets/tree/master/vgg_faces_keras_

USE THE SOURCE, LUKE!

https://github.com/miaoski/hitcon-2017-adversarial-ml