
The cookie monster
in your browsers

@filedescriptor

HITCON 2019

@filedescriptor

• From Hong Kong !

• Pentester for Cure53

• Love WebApp Sec & Browser Sec

• Bug Bounty Hunter (#1 on Twitter's program)

Motivation

Motivation

Motivation

History

1966

The Dark Age

1994 1997 2000

Netscape's cookie_spec RFC 2109 RFC 2965

Basic Syntax

Mechanism

More Attributes

Privacy Control

Obsoletes RFC 2109

Set-Cookie2 & Cookie2

No browser followed these specs!

The Modern Age

2011 2015 2016 2016

RFC 6265 Cookie Prefixes

(RFC6265bis)

Same-site Cookies

(RFC6265bis)

Strict Secure Cookies

(RFC6265bis)

Obsoletes RFC 2965

Summarizes reality

HttpOnly flag

Improves Integrity
across subdomains
over secure channel

Kills CSRF & Co.
Prevents secure

cookies overwrite from
non-secure origin

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊🍊🍊🍊🍊🍊🍊🍊🍊🍊

🍊

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪🍪🍪🍪🍪🍪🍪🍪🍪🍪

🍪

HTTP/1.1 200 OK
[...]
Set-Cookie: sid=123; path=/admin

document.cookie = 'lang=en'

HTTP Response

JavaScript API (write)

HTTP/1.1 200 OK
[...]
Set-Cookie: sid=123; path=/admin

document.cookie = 'lang=en'

POST /admin HTTP/1.1
[...]
Cookie: sid=123; lang=en

HTTP Response

JavaScript API (write)

Subsequent HTTP Request

document.cookie
// sid=123; lang=en

JavaScript API (read)

*Attributes do not appear in requests

Set-Cookie: sid=123; path=/admin; Secure
Name Value Attribute Flag

Attribute Flag

Expires Max-Age Domain Path SameSite Secure HttpOnly

Attribute Flag

Expires Max-Age Domain Path SameSite Secure HttpOnly

We will focus on these attributes in this talk

Domain

Set-Cookie: foo=bar; domain=.example.com
example.com

sub.example.com sub.of.sub.example.com
👀 👀

Domain to subdomains

Set-Cookie: foo=bar; domain=.example.com
sub.example.com

example.com sub.of.sub.example.com
👀 👀

Subdomains to subdomains

Set-Cookie: foo=bar;
sub.example.com

example.com sub.of.sub.example.com
👀 👀

Current domain

Dot or no Dot?
• They have no difference (old RFC vs new RFC style)

• Both widen the scope of a cookie to all (sub)domains

• The correct way to limit the scope is to not have the
domain attribute

• Some websites add the domain attribute for all cookies

• If one of the subdomains is compromised, such
cookies will be leaked to unauthorized parties

– RFC 6265 (4.1.2.3.)

"Some existing user agents treat an absent Domain
attribute as if the Domain attribute were present
and contained the current host name."

Still isn’t fixed in IE11 on Windows 7 / 8.1!

Cookie Bomb

• Most servers have a length limit on request headers

• When this limit is exceeded, HTTP 413 or 431 is returned

• Limited cookies injection can still result in client-side DoS

• Domain & Expire attributes help persist the attack across
(sub)domains.

https://example.com/aaa…aaa https://twitter.com/#a

https://example.com/aaa…aaa https://twitter.com/#b

https://example.com/aaa…aaa https://twitter.com/#c

GET / HTTP/1.1
[...]
Cookie: ev_redir_a=aaa...aaa;
 ev_redir_b=aaa...aaa;
 ev_redir_c=aaa...aaa

} 8kB+

Shared domains're vulnerable by design
e.g. github.io

Public Suffix List

• Community curated

• Some domains cannot have
cookies

• The same list that restricts
domain=.com.tw

XSS+OAuth

• Say you have a boring XSS

• And the site is using OAuth

• Sounds like you can use the XSS to takeover accounts?

Expectation
https://google.com/oauth?client_id=example

HTTP/1.1 302 Found
Location: https://example.com/oauth/callback?code=123
Set-Cookie: sid=123

HTTP/1.1 302 Found
Location: https://example.com/home

Steal

Reality
https://google.com/oauth?client_id=example

HTTP/1.1 302 Found
Location: https://example.com/oauth/callback?code=123
Set-Cookie: sid=123

HTTP/1.1 302 Found
Location: https://example.com/home

Steal

1. Authorization code is single-use

2. Intermediate HTTP Redirect is transparent

XSS+🍪💣+OAuth

1. Perform Cookie Bomb Attack via XSS

2. Embed an iframe pointing to OAuth IdP

3. It redirects to target with the authorization code

4. Server rejects the request due to large header

5. Use XSS to get the authorization code from iframe URL

https://example.com

https://google.com/oauth?client_id=example

https://example.com

https://example.com/oauth/callback?code=123

iframe.contentWindow.location.href

Path & HttpOnly

This is a valid request
True or False?

POST /admin HTTP/1.1
[...]
Cookie: csrf_token=foo; csrf_token=bar

Cookie Tossing
• Cookie key consists of the tuple (name, domain, path)

• Each cookie-key-value has their own attribute list

• (Sub)domains can force a cookie with the same name to
other (sub)domains

• Browser sends all cookies of the same name without
attributes

• Server thus has no way to tell which one is from which
domain/path

GitHub Pages used to be on *.github.com

Scenario

• Had an XSS on ton.twitter.com where contents are static

• twitter.com uses auth_token for session ID and
_twitter_sess for storing CSRF token

• Could modify _twitter_sess with an attacker-known value
and have site-wide CSRF

• However it’s protected by HttpOnly

HttpOnly

• Cookies with this flag cannot be read/write from
JavaScript API

• Safari before version 12 has a bug that allows writing to
HttpOnly cookies with JavaScript API

• Cookie Tossing can also help “bypass” this flag, as you
can create a cookie with the same name but different key
tuple

Expectation
Name Value Domain

_twitter_sess original
_twitter_sess attacker’s .twitter.com

POST /i/tweet/create HTTP/1.1
[...]
Cookie: _twitter_sess=attackers; _twitter_sess=original

authenticity_token=attacker-known

Reality
Name Value Domain

_twitter_sess original
_twitter_sess attacker’s .twitter.com

POST /i/tweet/create HTTP/1.1
[...]
Cookie: _twitter_sess=original; _twitter_sess=attackers;

authenticity_token=attacker-known

–RFC 6265 (5.4)

 2. The user agent SHOULD sort the cookie-list in the following
 order:

 * Cookies with longer paths are listed before cookies with
 shorter paths.

 * Among cookies that have equal-length path fields, cookies with
 earlier creation-times are listed before cookies with later
 creation-times.

Precedence matters

• Specs do not mention how to handle duplicate cookies

• Most servers accept the first occurrence of cookies with
the same name (think of HPP)

• Most browsers place cookies created earlier first

–RFC 6265 (5.4)

 2. The user agent SHOULD sort the cookie-list in the following
 order:

 * Cookies with longer paths are listed before cookies with
 shorter paths.

 * Among cookies that have equal-length path fields, cookies with
 earlier creation-times are listed before cookies with later
 creation-times.

Revised Attack
Name Value Domain Path

_twitter_sess original /
_twitter_sess attacker’s .twitter.com /i/

POST /i/tweet/create HTTP/1.1
[...]
Cookie: _twitter_sess=attackers; _twitter_sess=original

authenticity_token=attacker-known

–RFC 6265 (6.1)

Practical user agent implementations have limits on the number and
 size of cookies that they can store. General-use user agents SHOULD
 provide each of the following minimum capabilities:

 o At least 4096 bytes per cookie (as measured by the sum of the
 length of the cookie's name, value, and attributes).

 o At least 50 cookies per domain.

Overflowing Cookie Jar

• Another way to “overwrite” a HttpOnly cookie is to
remove it

• Browsers have a limitation on how many cookies a
domain can have

• When there is no space, older cookies will get deleted

• Drawback: it’s not always easy to know how many
cookies a victim has (tracking cookies are unpredictable)

More Cookie Tossing
Application

Self-XSS to full XSS
Selectively forcing attacker’s session cookie on

certain paths

https://attacker.myshopify.com

https://attacker.myshopify.com/admin/oauth/authorize?client_id=editor

https://script-editor.shopifycloud.com/oauth/callback?code=attackers

document.cookie='_master_udr=attackers;path=/admin/oauth

https://victim.myshopify.com/admin/oauth/authorize?client_id=editor

https://script-editor.shopifycloud.com/oauth/callback?code=victims

Login “CSRF”

Re-login victim

Self-XSS in iframe executing with victim’s session

Session Fixation
Forcing attacker’s session cookie with a subdomain

XSS

https://script-editor.shopifycloud.com

document.cookie='_flow_session=attackers;domain=.shopifycloud.com'

https://victim.myshopify.com/admin/oauth/authorize?client_id=flow

GET /oauth/callback?code=victims HTTP/1.1
Host: flow.shopifycloud.com
Cookie: _flow_session=attackers

Force a session cookie scoped to .shopifycloud.com using XSS

OAuth redirect with authorization code

Implementation
Discrepancy

Multiple Cookies at Once?

• We can only set one cookie at a time in a single Set-
Cookie header

• However, the older specs allow setting multiple in a single
Set-Cookie header

Cookie based XSS
Exploiting limited Cookie Injection with Safari

–RFC 2109 (4.2.2)

“Informally, the Set-Cookie response header
comprises the token Set-Cookie:, followed by a
comma-separated list of one or more cookies.”

Set-Cookie: foo=123; path=/admin; HttpOnly;, bar=456; Secure

GET /admin HTTP/1.1
[...]
Cookie: foo=123; bar=456

Works in Safari before version 10

https://outlook.live.com/owa/?realm=hotmail.com;, ClientId='-alert(2)-'

HTTP/1.1 200 OK
[...]
Set-Cookie: realm=hotmail.com;, ClientId='-alert(2)-'

GET / HTTP/1.1
[...]
Cookie: realm=hotmail.com; ClientId='-alert(2)-'

window.clientId = ''-alert(2)-'';

Safari sets 2 cookies

CSRF Cookie Injection
Server accepting comma separated cookies

–RFC 2965 (3.3.4)

“For backward compatibility, the separator in the
Cookie header is semi-colon (;) everywhere. A
server SHOULD also accept comma (,) as the
separator between cookie-values for future
compatibility.”

http://blackfan.ru/r/,m5_csrf_tkn=x,;domain=.twitter.com;path=/

__utmz=123456.123456789.11.2.utmcsr=blackfan.ru|utmccn=(referral)|utmcct=/
r/,m5_csrf_tkn=x

POST /messages/follow HTTP/1.1
[...]
Cookie: __utmz=123456.123456789.11.2.utmcsr=blackfan.ru|
utmccn=(referral)|utmcct=/r/,m5_csrf_tkn=x

m5_csrf_tkn=x

Cookie set by Google Analytics on translation.twitter.com scoped to .twitter.com

Twitter’s server parses it as 2 cookies

Defense

Cookie Prefixes

• Cookies prefixed with __Host- cannot have Domain
attribute

• This prevents (sub)domains from forcing a cookie the
current domain doesn’t want

• Cookies intended for (sub)domains are still vulnerable to
Cookie Tossing

• Use a separate domain for user generated assets

Servers must only
follow RFC 6265

PSA: CSRF & others will be dead in 2020😢

Q&A
find me on Twitter @filedescriptor

