
Fuzzing AOSP
for non-crash bugs

Elphet & Guang Gong
@360 Alpha Team

About us

●Elphet
○ Security Researcher (Intern) of 360 Alpha Team
○ Focus on Android system and application security

●Guang Gong
○ Senior Security Researcher and Team Leader of 360 Alpha Team
○ Focus on Android/Chrome

Introduction

• Fuzzers catch memory corruption bugs via crashes.
○ When a bug doesn’t result in a crash, then it will be ignored.

• Memory debugging tool also known as a runtime debugger is a
tool for finding software memory problem during runtime.

○ They increase the crash rate of a program by reporting errors positively.
(e.g. ASAN, MSAN, TSAN)

• Some kinds of bugs cannot be uncovered even with the help of
sanitizers.

○ e.g. Intra-object-overflow
○ We built a tool based on LLVM to help our fuzzers find ~30

vulnerabilities in AOSP

Agenda

●Fuzzers and Sanitizers
●Intra-object-overflow Bugs
●LLVM and IOODetector
●Case study
●Related Work and Discussion

Fuzzers and Sanitizers

●Fuzzing is proved to be an effective way to find memory
corruption bugs.

●A general workflow of a fuzzer
Seed
selector

Mutator/
Generator

Target
Program

Monitor/
Filter

Init
seed corpus

Report
crash

Discarded boring
test cases

Interesting
testcases

Real
Vulnerabilities

Fuzzers

●Crash is a necessary signal for identifying a vulnerability in general
purpose fuzzers

Seed
selector

Mutator/
Generator

Target
Program

Monitor
/
Filter

Init
seed corpus

Report
crash

Discarded
boring test cases

Interesting
testcases

Real
Vulnerabilities

Crash handlers in popular fuzzers
Crash handler in AFL Crash handler in

honggFuzz
Crash handler in

libFuzzer

Memory debugging tools (Sanitizers）

●Address Sanitizer

●Use after free

●Heap Buffer overflow

●Stack Buffer overflow

●Global buffer overflow

●Use after return

●Use after scope

●Initialization order bugs

• Leak Sanitizer

●Memory leaks

• Memory Sanitizer

• use of uninitialized memory

• Thread Sanitizer

• Data races and dead locks

• Undefined Behavior Sanitizer

• ……

Address Sanitizer Founded Bugs

●Sanitizers help fuzzers find more bugs by raise interesting signals
in the program

●It founds many bugs in open source projects

Algorithm of ASAN
●Core part: Shadow memory and poisoned red zone

Red
zone1 mem1 Red

zone2 Mem2 Red
zone3

●Heap buffer overflow check

●Stack buffer overflow check

After
Instrumenta

tion

Before
Instrumenta

tion

Bugs that ASAN cannot detect

●Overflow an inner field in an object
Red zone1 mem1 Red

zone2 Mem2 Red zone3

int size byte
data[4] int size2 ……

struct s1{
int size;
uint8_t data[4];
int size2;

}obj;
obj.data[5] = input();●Overflow a buffer with a large array index

Red
zone1

byte
data[4]

Red
zone2 Mem2 Red

zone3
index = 4 + sizeof(redzone2);
data[index] = input();

Intra Object Overflow

intra-object-overflow
other_field overwriten

large index integer overflow

Access red zone
Report an error

Intra Object Overflow Detector

Manually?

Manually sanitize the index to
avoid buffer overflow after
reviewing the project

A lot of boring work. Some
bugs would be missed.

Intra Object Overflow Detector

Automatically?

• Static Analysis

• LLVM Passes

• Data Flow Analysis

• Dynamic Analysis

• LLVM Instrumentation

• Data Flow tracing

• Fuzzing

IOODetector

LLVM

• Clang Frontend translate source
code into IR

• LLVM optimizer performs a
sequence of optimization on IR

• Backend then translate the
optimized IR into machine code

• We can customize our own
LLVM passes on the IR

LLVM IR

LLVM IR

LLVM IR GEP

The ‘getelementptr’ instruction is used to get the address of a subelement of an
aggregate data structure. It performs address calculation only and does not access
memory.

arg1: a type used as the basis for the calculations

arg2: a pointer or a vector of pointers, and is the base address to start from

arg3..n : indices that indicate which of the elements of the aggregate object are
indexed

LLVM IR GEP Instruction API

• getSourceElementType()
• getResultElementType()
• getNumIndices()
• hasIndices()
• Indices()
• getPointerOperand()
• getPointerOperandType()
• getOperand()
• ……

With all these
convenient APIs, we
can do whatever we

want

IOODetector simplest solution

• A check function call will
be inserted before every
GEP instruction whose
source Type is an array

• Detector sanitize two
things

• index < size & index > 0

GetSourceElementType

srcType
isArrayTy

GEP
hasIndicies

size=src->getNumElements

insertCheckBeforeGEP END

visitGetElementPtrInst

IOODetector’s simplest solution

• Checking Results:

IOODetector’s simplest solution

• Checking Results:

However, it’s not enough

GEP without numOfElements 1. SourceType is not
ArrayType.

2. Array NumElement
is missing

Store and Load Instructions(Memory Access)
The real memory access
behavior happens in
load&store instruction.
Checking on GEP
instruction will result in
false positive

Store and Load Instructions(Pointer Ref && Deref)

Load and Store instructions
are also used to propagate
tainted nodes.
If the src of
StoreInst/loadInst is tainted

callInst and retInst
Tainted Value
propagating to/from
function call

IOODetector’s Solution

• Step1: Find all explicit GEP instructions. Allocate a tag for them.
• new_node(int unique_tag, int current_index, int number_element);

• Step2: Traverse its user list
• propagate(int src_tag, int uniq_dest_tag, int offset)
• check(int tag)

• Step3: Recursively traverse the user list of its user
• propagate(int src_tag, int uniq_dest_tag, int offset)
• check(int tag)

IOODetector’s Solution

• Taint Source
• GEP Instruction

• %arrayidx14.i = getelementptr inbounds [16 x i32], [16 x i32]* %16, i32 0, i32 0

• Taint Propagation
• GEP Instruction

• %arrayidx23.i = getelementptr inbounds i32, i32* %279, i32 8
• Load && Restore Instruction

• store i32* %2, i32** %1, align 8
• %3 = load i32*, i32** %1, align 8

• Call && Return Instruction
• %33 = call i32 @func(i8* %31, i32 %32)
• ret i32* %25

• Check Point
• Load & Store Instruction

• %37 = load i32, i32* %3, align 4
• store i32 %24, i32* %4, align 4

Detection Result

Detection Result All the three examples
are

Successfully Detected

Other Challenges and Solutions

• Recursion -> Tags in the the same function are constants
• fun_a->fun_b->fun_a
• Solution: we introduce node->call_layer field to simulate the call stack.
• For efficiency: only instrumented functions will be record.

• Multiple modules in a big project
• Global Tag Generator:

• Unique tags are required in every module
• Consistent tags for the same function are required

Find real target project in AOSP

●Code pattern of Intra object buffer in C

●Search [in .h files for a coarse result

●Or

●Search with regular expression in the whole AOSP

libxaac, the treasure

• libxaac is a new OMX component introduced in Android P
• XAAC stands for xHE-AAC (Extended High Efficiency Advanced

Audio Coding)
• Bit rate as low as 6kbps for mono and 12kbps for stereo when

network is congested. Request a higher bit rate version and
seamlessly switch over once more bandwidth available

• “Adding xHE-AAC to our patent pool ensures that broadcasters
and service providers can deliver the next generation of audio to
consumers efficiently and affordably.”

• libxaac in Android is the first implementation of xHE-AAC

libxaac, the treasure

• Memory Management in libxaac

●libxaac itself doesn’t allocate or
deallocate any buffers. It provides a
GET_SIZE_API. API caller is responsible
for memory management

●Big chunks are allocated for efficiency.
~64MB

●Sort of anti-fuzzing or anti-crash.
Unfriendly to Fuzzer+ASAN

• Lots of intra-object arrays in the allocated
big chunks

libxaac – configuration and decoding

Two attack Surfaces

configuration

decoding

Both the functions receive a
buffer as input

Both the two attack surfaces
uses two different big data
structures with lots of intra
object buffers

Fuzzing libxaac

●Two fuzzers for libxaac – lots of crashes raised by IOODetector

● configfuzzer

●Testing the configuration process of libxaac

●We also use this fuzzer to generate `good config bufs` for decoding stage. (After a
config-buf is processed, if the err_code is OK, then the buf is considered as a `good
config-buf`)

●1000+ good config bufs were generated in 1 week

● decodefuzzer

●The second stage of decoding an audio stream. a) choose a random gcb b) feed
gcb to configxaacdecoder. c) generate test cases for decodexaacstream interface

Vulnerabilities found in AOSP

Confirmed bugs

• CVE-2018-9569, CVE-2018-9570, CVE-2018-9571, CVE-2018-9572, CVE-2018-9573,
CVE-2018-9574, CVE-2018-9575, CVE-2018-9576, CVE-2018-9577, CVE-2019-2063,
CVE-2019-2064, CVE-2019-2065, CVE-2019-2066, CVE-2019-2067, CVE-2019-2068,
CVE-2019-2069, CVE-2019-2070, CVE-2019-2071, CVE-2019-2072, CVE-2019-2073,
CVE-2019-2074, CVE-2019-2075, CVE-2019-2076, CVE-2019-2077, CVE-2019-2078,
CVE-2019-2079, CVE-2019-2086.

Duplicated issues

• AndroidID-119054381, AndroidID-119054381, AndroidID-117992588 , AndroidID-
117789761, AndroidID-117789797, AndroidID-116772652, AndroidID-116746433,
AndroidID-117079549, AndroidID-117064603, AndroidID-117105233, AndroidID-
117204086, AndroidID-115919654 ……

And some other issues…

Case1 CVE-2019-2065 str_node is a pointer that
points to a field of

ia_spline_nodes_struct

impd_read_bits_buf is
controllable, k could be
larger than 256 when

end_marker never meet

out-of-bounds write
here

str_node lies in the
deep layer of multiple

nested structures

Case2 CVE-2018-9575

Impd_read_bits_buf is
controllable.
temp:[0..0xff]

DOWNMIX_INSTRUCTI
ON_COUNT_MAX is 16

dwnmix_instructions_co
unt’s range is [0..0x7f]

dwnmix_instructions[] out-
out-of-bounds access

Case2 CVE-2018-9575

Write controllable values
out-of-bounds

Case3 CVE-2019-2064
Number of elements in array
str_filter_element is
FILTER_ELEMENT_COUNT_MAX(16)

Filter_element_count is controllable, its range
is [0..63]

str_filter_elements is a temp pointer pointed
to the start address of member array
str_filter_element
The for-loop goes through at most 64 cycles,
which is larger than
FILTER_ELEMENT_COUNT_MAX(16)

Pointer str_filter_elements will point to the
next element in this array

Many possible oobw issues

False positive and performance

●Strange accessing approaches will result in false positive

mem1

byte predata[5] byte data[4] int size2 ……

ptr *(int*)(ptr+NUM_DATA)

IOODetector will be
sensitive and report an

error

(int)(ptr-NUM_PREDATA)

●The overhead of IOODetector is about ~2.6x after we optimize our code
to instrument as less code as possible

Further stories

The library has been marked as experimental and is no longer
included in any production Android builds since Nov. 2018

Google introduced a Sanitizer named BoundSan to automatically
instrument arrays to prevent overflows and fail safely.

BoundSan is enabled in 11 media codecs and throughout the
Bluetooth stack for Android Q. By optimizing away a number of
unnecessary checks the performance overhead was reduced to
less than 1%.

https://security.googleblog.com/2019/05/queue-
hardening-enhancements.html

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

THANKS
Q&A

