
HITCON 101 Sharing
SELinux

從不認識到在一起

About Me

王禹軒 (Bighead)
● 中央大學 Advanced Defense Lab

○ 打胖

● 工研院 Intern
○ Whitelist 1.0 PoC
○ Hypervisor-based Whitelist (page verification)
○ SELinux

SELinux Top Search

The ways to disable SELinux

● Setenforce 0
● Edit /etc/selinux/config : SELINUX = permissive or disable
● Delete policy
● Get rid of the boot argument : security=selinux selinux=1

The ways to disable SELinux

● Setenforce 0
● Edit /etc/selinux/config : SELINUX = permissive or disable
● Delete policy
● Get rid of the boot argument : security=selinux selinux=1
● Do NOT use default SELinux-enabled distro (CentOS)

The ways to disable SELinux

● Setenforce 0
● Edit /etc/selinux/config : SELINUX = permissive or disable
● Delete policy
● Get rid of the boot argument : security=selinux selinux=1
● Do NOT use default SELinux-enabled distro (CentOS)

SELinux gives you the power to close it

Don’t be Afraid of SELinux

● 60 page survey paper
● 400 page SELinux Notebook
● Makefile survey
● Policy Set survey
● Powerful mentor

Don’t be Afraid of SELinux

● 60 page survey paper
● 400 page SELinux Notebook
● Makefile survey
● Policy Set survey
● Powerful mentor

Don’t be afraid! It is not scary

Trust Lovely Santa Claus

Reference : Santa Claus PNG Transparent Image - PngPix

Trust Evil Santa Claus !?

Futurama : Robot Santa Claus

Why Access Control ?

● Goal: Protect data and resources
from unauthorized use
○ Confidentiality (or secrecy) :

Related to disclosure of
information

○ Integrity :
Related to modification of
information

○ Availability :
Related to denial of access to
information

Reference: Security Awareness Posters

Access Control Basic Terminology

● Subject: Active entity – user or process

● Object: Passive entity – file or resource

● Access operations: read, write, ...

Subject Object

Action

Access Control is Hard Because

● Access control requirements are domain-specific
○ Generic approaches over-generalize

● Access control requirements can change
○ Anyone could be an administrator

Reference : https://profile.cheezburger.com/imaguid/

Basic Concepts of Different Access Control Policies

● Discretionary (DAC): (authorization-based) policies

control access based on the identity of the requestor and

on access rules stating what requestors are (or are not)

allowed to do.

● Mandatory (MAC): policies control access based on

mandated regulations determined by a central authority.

DAC : Access Matrix Model

File 1 File 2 File 3 Program 1

Alice
own
read
write

read
write

Bob read
read
write

execute

Charlie read
execute

read

DAC - Identity !!

DAC weaknesses (1/2)

● Scenario

○ Bob owns a secret file, Bob can read it, but not

Daniel

○ In DAC, Bob can be cheated to leak the information

to Daniel.

○ How?

■ Trojan horse: software containing hidden code

that performs (illegitimate) functions not known to

the caller

Trojan horse - Simple Example

Bob invokes

Application (e.g. calendar)

read contacts
write stolen

code

malicious
code

Secret File content

owner Bob

Alice 06-12345678
Charlie 06-23456781

File stolen

owner Daniel

Alice 06-12345678
Charlie 06-23456781

(Bob,write,stolen)

DAC weaknesses (2/2)

• DAC constraints only identity, no control on what happens
to information during execution.

• No separation of User identity and execution instance.
• Trojan Horses exploit access privileges of calling subjects

identity.

MAC - Behavior !!

● Policies control access based on mandated
regulations determined by a central authority.

User Application Process
Label

Bob calendar_t

Central Authority Rule

Subject Label Object Label Permission

calendar_t secret_t No read

calendar_t stolen_t Read, No write

File name Object Label

Secret file secret_t

File stolen stolen_t

How MAC fix the DAC weakness (1/2)

How MAC fix the DAC weakness (2/2)

Bob invokes

Calendar (calendar_t)

read contacts
write stolen

code

malicious
code

Secret File content (secret_t)

owner Bob

Alice 06-12345678
Charlie 06-23456781

File stolen (stolen_t)

owner Daniel

Alice 06-12345678
Charlie 06-23456781

(Bob,write stolen fail)

Different MAC Mechanisms

Apparmor

● Path-based system : filesystem no need to support
extended attribute

● Per-program profile : describe what program can do.
● Concept of Different Subject Domain : If you want a

different Subject Domain, you should create a hard link &
rename the program & create a new profile for it.

Apparmor Profile

Extended Attribute

Security.selinux = “Label”

File
inode

Smack
(Simplified Mandatory Access Control Kernel)
● Label base : file system should support extended attribute
● Default rules are fixed in kernel

○ Any access requested by a task labelled "*" is denied.
○ A read or execute access requested by a task labelled "^" is permitted.
○ A read or execute access requested on an object labelled "_" is

permitted.
○ Any access requested on an object labelled "*" is permitted.
○ Any access requested by a task on an object with the same label is

permitted.
○ Any access requested that is explicitly defined in the loaded rule set is

permitted.
○ Any other access is denied.

SELinux

● Label base : file system should support extended attribute
● Finer granularity :

● Different MAC model support :
Type Enforcement, MCS, MLS, RBAC

● Hard to learn

Subject Object:Class
Action

Why Choose SELinux : Comparison

NAME SELinux Smack Apparmor

Type MAC MAC MAC

Granularity
(Hook Point)

176 114 62

Extended Attribute Yes Yes No

Separation of Policy and
Mechanism

Yes Partial Yes

SELinux Concept (1/2)

Object
Label

Process Request Resource
(e.g. files,
printers)

Access
Request

Subject
Label

● Mode :
○ Enforce & Permissive & Disable

● Label Format :
○ User:Role:Type:Range

SELinux Concept Outline (2/2)

● Type Enforcement (TE): Type Enforcement is the primary
mechanism of access control used in the targeted policy

● Multi-Category Security(MCS): An extension of
Multi-Level Security.

● Multi-Level Security (MLS): Not commonly used and
often hidden in the default targeted policy.

Type enforcement (1/2)

Reference : https://opensource.com/business/13/11/selinux-policy-guide

https://opensource.com/business/13/11/selinux-policy-guide

Type enforcement (2/2)

MCS (1/2)

MCS (2/2)

MLS (1/2)

MLS (2/2)

How to Use SELinux Management Tool

Enable SELinux First !

SELinux Management : Get Selinux Context (Label)

● ls -Z (get file selinux context)
● ps Z (get process selinux context)
● seinfo -t : lists all contexts currently in use on your system

SELinux Management :
2 Step Used to Relabel File Type Using Setfiles

● File_contexts : used by the file labeling utilities.
● semanage fcontext --add --type httpd_sys_content_t

"/var/www(/.*)?"
○ First write the new context to the

/etc/selinux/targeted/contexts/files/file_contexts.local
file.

● setfiles file_contexts /var/www
○ Next, we will run the setfiles command. This will relabel

the file or directory with what's been recorded in the
previous step

SELinux Management :
Command to Change File Label & Check Policy

● chcon --type bin_t test.c
○ change the context of the file.

● runcon -t kernel_t /bin/bash
● sesearch --allow --source kernel_t --target proc_t

○ check the type of access allowed for ourselves

SELinux Management :
Boolean

● List Boolean :
○ getsebool -a

● Set Boolean :
○ setsebool BooleanName (1

or 0)

Troubleshoot : Audit Message (1/2)

● avc : denied { relabelto } for pid=1382 comm=”chcon”
name=”test.c” dev=”sda1” ino=418253
scontext=system_u:system_r:kernel_t:s0
tcontext=system_u:object_r:unconfined_t:s0 tclass=file

● Dmesg | grep avc | audit2allow -M test
○ Generate test.pp, use semodule -i test.pp to install

policy module.

Troubleshoot : Audit Message (2/2)

User to Developer : What Change ?

SELinux Architecture - LSM Hook

LSM Hook and SELinux Security Server

System Call
Interface

Entry Points

Security
Server

with
Central
Policy

Access
Hook

Security-sensitive
Operation

Authorize
Request ?

Yes/No

Access
Hook

Access
Hook

Security-sensitive
Operation

Security-sensitive
Operation

Reference : http://web.eecs.umich.edu/~aprakash/security/handouts/AccessModel_040112_v2.ppt

SELinux Architecture - SELinux-aware Application

What is the SELinux-aware Package

.te
.if
.fc

Refpolicy

Program
Behavior

SELinux-aware Level

1. Unaware (e.q. rm)
2. Aware, but not necessary (e.q. ls, ps)
3. Access Securityfs without checking special class (e.q. getenforce)
4. In addition to access Securityfs, check the permission in special class below

(e.q. systemd, init, setenforce)
a. File, Socket, Database, Filesystem class

i. Relabelto
ii. Relabelfrom

b. Process class
i. Dyntransition
ii. Setexec
iii. Setfscreate
iv. Setkeycreate
v. Setsockcreate

c. Security class
d. Kernel service class

Example : Linux Initialization

init

Getty & Login

init.rc

PAM : Authenticate User
&

Compute corresponding
SELinux user context

Load policy &
Reexecute itself to
change context

seusers

contexts/users/...

SELinux Architecture - Build Policy

How to Write Policy by Yourself

Monolithic Base

Policy
Module

● All build by 3 file :
○ .te : like .c file
○ .if : like .h file
○ .fc (describe file context)

Policy Build Sequence

Kernel
Policy
Language

Policy Set
(Written with M4
macro language)

Policy
Binary

Macro Expansion

Checkpolicy
or
Checkmodule

Secure Boot

Reference : https://developer.ibm.com/articles/protect-system-firmware-openpower/

Access Control - SELinux

Integrity - IMA/EVM

https://developer.ibm.com/articles/protect-system-firmware-openpower/

Call Our Team

pchang9

The 9th Generation
pchang

Yi-Ting

大

頭

http://www.youtube.com/watch?v=H6N84f0C5XE

Q&A X SELinux Demo

59

SELinux enforce mode SELinux permissive mode

Busybox (Embedded System)

Ubuntu
限定指定資料夾
僅能指定程序存取

保護特定程序
不被任何人kill

SELinux enforce mode
on Raspberry Pi 3 Model B+

