I’ ! @ »
| ISA ~20)—0)

AUGUST 5-6, 2020
RRIFFINGS

Breaking Samsung's Root of Trust:
Exploiting Samsung $10 S-Boot

J eﬁXX W ot D g Y
A ..’t"
S * » %o o o tu 4 . . . &~ > ol [¥s | .
oy ."."o L IP Y > o;,-. SN = .‘.-'.. 30"&?“.‘:’0<i;’%‘~¢:~ to* g Sh Wa'e o A% WY ’...'.,. .?. . ‘.. ‘;. " &
ﬂ%h I\Q .$ -‘o‘,.‘. * ;‘.Qﬁ? f Mﬂ' O A Y o ’.‘”“?\. R ~

s drgenaw™

#BHUSA @BLACKHATEVENTS

Jeff Chao (Jeffxx)

» Researcher at TrapaSecurity
+ Ex-senior Researcher at TeamT5

+ Member of HITCON CTF Team

+ Member of Chroot

+ Focus on Mobile and loT Vulnerabilities

}AGENDA

o Demo
@ Related Work

@ Vulnerabilities in Secure Boot
@ Samsung Security Framework - Knox

@ After Code Execution on S-boot

https://docs.google.com/file/d/1-k_4o-1LsPyHnXOJXMHuqawxj9Zr-FNS/preview

Samsung Security Framework
Knox

Knox - Root of Trust

B

) €3 ©

TR UNA A > > BUILD TRUST > > MAINTAIN TRUST > > PROVE TRUST

ROOT OF TRUST
Samsung Secure Boot Key Trusted Boot using Real-Time Kernel Attestation
TrustZone-based Integrity Protection (RKP)
Rollback Prevention Fuses Measurement Architecture
(TIMA) Periodic Kernel
Knox Warranty Fuse Measurement (PKM)
| | Rollback Prevention | |
Device Root Key (DRK) DM-Verity

Device-Unique Hardware Key SE for Android

(DUHK)

Knox — Trusted Boot

+ Hardware PBL
» Verify secure boot(S-Boot) & load

+ S-Boot
» Set handler for Monitor mode, drop privilege
+ Request EL3 to initial TEEOS
» Verify & Load Hypervisor (uh.bin)
» Verify & Load Kernel (boot.img)

+ Kernel with DM-Verity
» Verify system.img & mount

» Verify vendor.img & mount

Product

Platform

Kernel

Boot Loader

Hardware

| Hyp&tviso

Knox bit (warranty bit)

+ One-time fuse, can’t restore

. Blow the fuse when trying to boot a custom image and prevent further booting

[

PRODUCT NAME: SM-GS268
CURRENT BINARY: Custom
SYSTEM STATUS: Custom

REACTIVATION LOCK: OFF
CROM SERVICE - Unlock

P

T

Sensitive Data Protection

» The storage (Sensitive Data) is encrypted when the device is locked

+ Encrypted Keys are stored in trustzone

T —) T —) £ — D
Sensitive Sensitive Sensitive
Data Data Data
Protected Protected Protected
Data Data Data
A J N\ A _ 7

OFF ON, LOCKED ON, AUTHENTICATED

Sensitive Data Protection cont

. Some critical information can only be decrypted by trustlet

ﬁkh OS Application Environment \ 63&(’ Execution Environment (TEEN

i Trusted |

Trusted
Apps

Trusted
Apps

Client Applications

Trusted OS Components
TEE Client API

Hardware * HWKeys * Crypto Accelenton
2 Iy v * Secure Storage * NFC Controller

Secure * Trusted W * Secure Blement

Resources [Xeypad, Screen) + Others

Samsung KNOX
Hardware Platform

ARM Trustzone

Non-secure World Secure World

ELO (User Mode J (User Mode)

Related Work

BH17 — Defeating Samsung KNOX

with zero privilege by returnsme
. ELO-> EL1

Non-secure World Secure World

ELO (User Mode (User Mode)

BH17 EU - How Samsung Secures
Your Wallet by Tencent Lab

. ELO -> Secure ELO (kinibi)

Non-secure World Secure World

ELO (User Mode m User Mode)

BH19 — Breaking Samsung’s Arm

Trustzone
+ ELO -> Secure-EL3 (kinibi, S8 and before)

Non-secure World Secure World

ELO (User Mode User Mode)

EL1 (Kernel Mode) (\Kerne Mode)

What if the device Is turned off &
we don’'t know the passcode?

In this talk

» out-side the box(locked phone) -> Non-Secure EL1

Non-secure World

(User Mode)

Secure World

(User Mode)

S-Boot Boot Flow

Set monitor mode

\
J

Init

J U U

Check boot mode | 41umn down + power [ODIN mode]

Verify boot image

|

Boot into kernel

C NN _\(_\X(C \(

__/

ODIN mode

+ Flash stock firmware

- Warning S e o
+ Rollback prevention

A custom OS can cause critical problems
in phone and installed applications.

If you want to download a custom OS,
press the volume up key,

otherwise, press the volume down key
to cancel.

Volume up: Continue Downloading. '

Volume down: Cancel (restart phone)

Vulnerabillity |

Odin Request

. opCode
+ 0x64 Odin mode initial & settings
+ 0x65 Flash PIT

typedef struct __attribute__((__packed__)) {

. 0x66 Flag image unsigned int opCode;
unsigned int subOp;
, subOp unsigned int argl;
unsigned int argZ;
+ Depends on opCode unsigned int arg3;

unsigned int arg4,
. Maybe Iinitialize, set, get ...etc } odin_request;

. arg1 ~ arg4

+ assign size or some value

Odin Flash Image Command

I I if ((v37.0p & OXFFFFFFFB) == 2) // flash
« No check for provided size i i & as

if (dword (C934618C != 5 && dword (934618C)
return result;

. Integer overflow argl = v37.argl;

odin_response(@Ox66ui64, 0i64);
image offset = dword_C93461E4;

. Use 0xC0000000 if less then 0x1e00000 i ¢ duord. GI2461E4.

{
vl2 = odin_flash_buf_ptr;

. Otherwise use 0xB0000000 e |

{
if (argl > Ox1E00000)

» Copy to buffer { signed op; bool
v1li2 = OxBO 164;

odin_flash_buf ptr = 0xB0o0000001i64;
¢ 88 and before at OXCOOOOOOO return usb_recv_until(qword C93461C0, v12, argl);
¥
« S9 and later at 0x880000000 vi2 = sub_C9083142C();

odin_flash_buf ptr = vi12;
image offset = dword_C93461E4;

Overflow the physical memory

0xC0000000

0xC9000000

buffer for flash
image

sboot code
segment

sboot data
stack

heap

heap

0xC0000000

filled with null

0xC9000000

=)

data overwritten

Bypass MMU

» S-Boot code segment at 0xC9000000 but read only

» USB devices have direct memory access

+ lgnores mmu control

Cache Incoherency

» While receiving data, the CPU keeps tracking the USB event

+ This code is cached

while(eventCount--){
event = usbDev->eventBuffer[usbDev->currentEventPos];
if (levent)
continue

switch(event) {

// event handler

+ Only the heap will not be cached

Code Execution

+ The heap is not cached, the code accesses a pointer in the heap...

. Trigger data-abort as soon as we overwrite heap data with NULL

while(C eventCount--){
event = usbDev->eventBuffer[isbDev->currentEventPos];
if (levent)
continue

switch(event) {

4 S Sl SRR o
// event handler

+ Overwrite the error handler code with jump sled

+ Put shellcode in front of the code segment

Overflow the physical memory

0xC0000000 buffer for flash
image

0xC9000000

0xC0000000

filled with null

shellcode

0xC9000000

modified sboot
code segment

sboot code
segment

=

sboot data

But

+ S9 and later are not exploitable
» The default buffer is changed to 0x880000000

» Spent half a year trying to exploit S10

Potential Exploit Path on S10

+ In S9 and later, ODIN has parallel & compressed download mode

. It will boot up another 2 cpu cores, and set the image buffer to 0x880000000

. Fallback to normal download if boot cpu failure

. Buffer change back to 0xC0000000

v2 = cd_v3 _smp register(&v3);

I+ € v2)

1
dprintf("%s: v3_smp register failed with error id = %d\n", "compressed download init", v2);
dprintf("%s: fallback to normal download\n", "compressed download init");
VO = 1z

}

Potential Exploit Path on S10

+ Make CPU boot fail

| _inte4 _ fastcall smp boot(inte4 al)
{
__dntes vl fl x1
unsigned int *v2; // x20
void *v3; // x©
__int32 v4; // we
__int64 result; // xo

vl = al;
dprintf("%s\n", "smp boot");
smp_init();

v2 = off _C916E550;

v3 = off C916E550;
*off_C916DF30 = v1;
sub_C90163A0(v3);

v4 = next_available_cpu();
if (v4 ==-1)
{

dprintf("No secondary cpus available\n");
sub_C90163A4(v2);
result = OXFFFFFFFFLL;

}

| int32 _ fastcall next_available cpu()

{
__int32 result; // wo

dprintf("%s: started\n", "next_available cpu");
result = current_cpu_id;
if (current_cpu_ id > 3)
return OXFFFFFFFF;
++current_cpu_id;
return result;

Potential Exploit Path on S10

. Uart mode

+ Cmd —smp test

» Test Boot up a cpu core and shutdown immediately

+ But count of booted cores will not decrease
+ Cmd — download

+ Enter Odin mode

Potential Exploit Path on S10

» Enter Uart Mode
+ We need a debug cable to make S-Boot detect RID 523K

v17 get:jig_éa&();

vi18 ccic_read_adc();
dprintf("%s: jig _adc=%02x, cc_adc=%02x\n", "board ccic_check uart", vi7, vi18); case 5u:
rid = ccic_read_adc(); dprintf (" (RID_523K)\n", vO);
?c (rid == §) result = v2;
dprintF("CC UART\n"); break;
rid = ifconn_com_to uart(2u);
}

. Tried TypeC VDM mode, accessory mode, pull-down pull-up resistor
. All failed

We reported the bug on Aug 2019

LATER »

Result: Duplicated

Patch Note

» Samsung Security Update - October 2019
+ SVE-2019-15230 Potential Integer overflow in Bootloader

SVE-2019-15230: Potential integer overflow in Bootloader

Severity: Critical

Affected Versions: N(7.x), O(8.x), P(9.0) devices with Exynos chipsets

Reported on: August 8, 2019

Disclosure status: Privately disclosed.

Type mismatch between signed and unsigned integer in bootloader can lead to integer overflow.
The patch prevent integer overflow by changing the type of a variable into unsigned integer.

The Patch

size = argl;

size = argl; 1F argl <= 0x10000000
odin_response(0x66LL, OLL); {

if (!'dword C923A614) odin_response(0x66, 0);
{ if (!dword _€9249C8C)

dword C93CC728 = v9; {

dword C93CC72C = size; dword_C93DBDB8 = v14;

if (size <= ©x2000000) dword_C93DBDBC = size;

{ signed op; bool if ((unsigned int)size <= 0x2000000)
v21 = mmap(); { unsigned op; bool
qword_C93CC710 = v21; v26 = mmap();

} gqword_C93DBDA® = v26;

else }

else

LATER »

Vulnerability ||

Aligned Size?

_inte4 _ fastcall usb recv_until(__inté64 handle, _ int64 buf, unsigned _ int64 size)

{
_DWORD *v3; // x©

gword C93CC468 = size;
dword C93CC480 = 1;
gword C93CC490 = handle;
gword C93CC470 = OLL;
dword C93CC484 = 0;
gword C93CC498 = buf;
if (size == size / qword C91494B0 * qword C91494B@)
gword C93CC478 = size;
else
gword C93CC478 = qword (€91494BO + size / qword (C91494B0 * qword C91494B0;

Odin - packet data size

« We can set packet data size with opCode 0x64, subOp 0x05

switch (cmd.subOp)
{
case 5:

gword _C93CC6DC = argil;
dprintf("packet data size is changed to %d.\n", argl);
qword_C91494B@ = gqword_C93CC6DC | (HIDWORD(qword C93CC6DC) << 32);
odin_response(©x64LL, OLL);
return;

Exploit
. Bypass the check

« The usb receive size can be larger than 0x10000000 again

» Achieve code execution in the same way as the previous vulnerability

| reported the bug immediately

Patch Note

+ Samsung Security Update - Jan 2020

SVE-2019-15872: Improper aligned size check leads buffer overflow in secure bootloader

Severity: Critical

Affected Versions: 0(8.x), P(9.0), Q(10.0) devices with Exynos chipset

Reported on: October11, 2019

Disclosure status: Privately disclosed.

An invalid check of usb buffer size in Secure Bootloader allows arbitrary code execution.
The patch adds proper size check logic of usb buffer.

The Patch

case 5:
packet data size = argil;
if (argl <= OXFFFFFF)
{
sub_C90554C0("packet data size is changed to %d.\n");
*off C916F5A8[0] = packet data size | (HIDWORD(packet data size) << 32);

return odin_resp(100LL, OLL);

}
sub_C90554CO("USB packet size is too big!\n");

odin_resp(OxFFFFFFFFLL, OLL);
goto LABEL_34;

' HpURS LATER

’ —

THREE

y,i
—— =g l

e —— .

Vulnerability Il

ODIN — PIT flash command

» opCode = 0x65

» PIT is very small, odin store it to heap buffer

pit _recv_size = argl;
if (argl - 1 <= OX1FFF)

{
odin_response(Ox65LL, OLL);

usb_recv_until(odin_state, pit buf, pit_recv_size);
return;

}
dprintf("Invalid Size: PIT\n");

+ With the size 0x2000

pit_buf = malloc(@x2000);
odin_state = malloc(8);

The patch of vulnerability |

» Size of packet data can be upto OxFFFFFF
+ > 0x2000 => heap overflow

case 5:
packet data size = argil;
if (argl <= OXFFFFFF)
{

sub_(C90554C0O("packet data size is changed to %d.\n");

*off C916F5A8[0] = packet data size | (HIDWORD(packet data size) << 32);

return odin _resp(100LL, OLL);

}
sub_C90554CO("USB packet size is too big!\n");

odin_resp(OxFFFFFFFFLL, OLL);
goto LABEL 34;

Pseudo code - recelve data

» This is a pseudocode representation of the receive operation

1f (request_size < Oxffffff)
first_recv_size = request_size
else
first_recv_size = packet_data_size

count = 0;
count += usb_recv(buf, first_recv_size);

while (count < reauest size){
usb_recv(buf+count, packet_data_size);

» In our test, the usb _recv function will receive until the passed size is reached

. Even if we send data with a huge interval

We thought this was
un-exploitable, so | stuck to
vulnerability |

How About Interrupting the USB

+ Remove and Re-insert the USB cable

. the usb recv returns with insufficient size

1f (request_size < Oxffffff)
first_recv_size = request_size
else
first_recv_size = packet_data_size

count = 0;
count += usb_recv(buf, first_recv_size);

while (count < request_size){
usb_recv(buf+count, packet_data_size);

Heap overflow

« We can overwrite the metadata
of heap chunk

+ House of Spirit

chunk {
unsigned int size;
unsigned int inused;

chunk * prev;
chunk * next;

}

unused

prev
next

 unused DN

Fake Chunk

No check for double linked list
faked chunk

unused
prev
next

unused
prev
next

Limited Overwrite Data

+ “prev+4=1
faked chunk
. It aarch64, integer 64 bit SZ8 unused = 1

prev

» Code at 0xC9000000 next

unused

. We can not point to —

next

. Got

« Function pointer

Overwrite RIP in stack

+ The only chance is to overwrite a return

SP SP

PC PC
address on stack
+ Only 3 function calls - -
SP SP
PC PC

» Fortunately

+ Odin cmd buf is the first local variable

unused

prev : >

next SP
PC

unused

prev
next

After Code Execution in S-boot

Boot the phone

+ We smashed the stack & heap
» Hard to recover

» Call the boot functions one by one

buffer for
flash image

sboot code
segment

sboot data

filled with null

shellcode

modified
sboot code
segment

Skip Trustzone related calls

+ We only have EL1 privilege
+ Some smc calls to trustzone can not be called twice

» Skip the smc calls and set the related parameters

Load Custom Kernel

. After loading the kernel to memory (the function cmd_load kernel)
+ Replace the image with a custom one

» Boot the kernel (call the function cmd_boot)

Exploit

2

2

2

2

Set the size of packet data to a big number
Send Odin PIT flash command

Send payload after Interrupt the usb_recv(), leads to heap overflow
Send Another Odin command to trigger malloc & free the buffer

Overwrite RIP on stack, jump to shellcode
+ Re-init heap and stack
» Continue booting

. Before boot into kernel, replace the boot image

We got el1 in normal world

But the phone is still locked

M —)
Sensitive
Data @
Protected
Data @
N /

OFF

Sensitive

Data @

e

Protected

Data @

/

ON, LOCKED

F — B
Sensitive

Data
Protected

Data

\ 7

ON, AUTHENTICATED

Can not read sensitive data

» Storage is still encrypted if we didn’t provide the screen passcode
» Encryption key can only be decrypted in the gatekeeper trustlet

+ Some data in trustlet can not be reached

Man in the Non-secure EL1

« Wait for the user to unlock the phone

 Hijack / Sniff everything between non-secure world and secure world

Non-secure World Secure World

ELO (User Mode) (User Mode)

Exposed Attacking surface

 Attacking secure world trustlet
. Gatekeeper trustlet
. Samsung Pay trustlet

. Keystore trustlet

+ Many vulnerabilities in the past

Non-secure World Secure World

ELO (User Mode) (User Mode)

Attack the gatekeeper trustlet to decrypt storage

+ SVE-2019-14575

SVE-2019-14575: Brute force attack on screen lock password

Severity: High

Affected Versions: 0(8.x), P(9.0), Q(10.0) devices with Exynos7885, Exynos8895, Exynos9810 chipsets

Reported on: May 17, 2019

Disclosure status: Privately disclosed

Avulnerable design in Gatekeeper trustlet allows brute force attack on screen lock password. And previous patch caused unexpected side effects that required a fix.
The patch adds exception handling to prevent unexpected close of Gatekeeper trustlet.

. With this vulnerability, we can try all the possible pattern codes in a few hours.

Sensitive Data unlocked

Fo— D
Sensitive
Data @
Protected
Data @
N %

OFF

F—
Sensitive
Data
Protected
Data @
\ J

ON, LOCKED

o o—)
Sensitive
Data @
Protected
Data

\ /

ON, AUTHENTICATED

Conclusion

. Even if the data is stored in secure world, it doesn’t mean it's 100% secure
» But it's made exploiting complex, multiple actions are needed to retrieve the data
. Landing - RCE / Local USB Exploit / Social Engineering
. Privilege escalation to non-secure EL1
. Vulnerabilities in trustlet to get into secure-world ELO
. Privilege escalation from secure-world ELO to secure-world EL1 or EL3

« Without all of this, especially the points in red, the data in the phone is still safe

Disclosure Timeline

+ 2019-10-02 Report Vulnerability |

+ 2019-10-08 Informed Vulnerability | duplicated

+ 2019-10-11 Report Vulnerability |l

» 2020-01-06 Samsung Patched, SVE-2019-15872
» 2020-01-21 Report Vulnerability 1l

» 2020-05-06 Samsung Patched, SVE-2020-16712

THANK YOU!

Jeffxx
jeffxx@trapasecurity.com

