
Breaking Samsung's Root of Trust:
Exploiting Samsung S10 S-Boot

Jeffxx

#BHUSA @BLACKHATEVENTS

Jeff Chao (Jeffxx)
◆ Researcher at TrapaSecurity

◆ Ex-senior Researcher at TeamT5

◆ Member of HITCON CTF Team

◆ Member of Chroot

◆ Focus on Mobile and IoT Vulnerabilities

AGENDA

01

02

03

04

05

Samsung Security Framework - Knox

Related Work

Vulnerabilities in Secure Boot

Demo

After Code Execution on S-boot

Demo Video

https://docs.google.com/file/d/1-k_4o-1LsPyHnXOJXMHuqawxj9Zr-FNS/preview

Samsung Security Framework
Knox

Knox - Root of Trust

Knox – Trusted Boot
◆ Hardware PBL

◆ Verify secure boot(S-Boot) & load

◆ S-Boot

◆ Set handler for Monitor mode, drop privilege

◆ Request EL3 to initial TEEOS

◆ Verify & Load Hypervisor (uh.bin)

◆ Verify & Load Kernel (boot.img)

◆ Kernel with DM-Verity

◆ Verify system.img & mount

◆ Verify vendor.img & mount

Knox bit (warranty bit)
◆ One-time fuse, can’t restore

◆ Blow the fuse when trying to boot a custom image and prevent further booting

Sensitive Data Protection
◆ The storage (Sensitive Data) is encrypted when the device is locked

◆ Encrypted Keys are stored in trustzone

Sensitive Data Protection cont
◆ Some critical information can only be decrypted by trustlet

ARM Trustzone
Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

Related Work

BH17 – Defeating Samsung KNOX
with zero privilege by returnsme
◆ EL0 -> EL1

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

BH17 EU - How Samsung Secures
Your Wallet by Tencent Lab
◆ EL0 -> Secure EL0 (kinibi)

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

BH19 – Breaking Samsung’s Arm
Trustzone
◆ EL0 -> Secure-EL3 (kinibi, S8 and before)

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kerne Mode

Monitor Mode

EL0

EL1

EL2

EL3

What if the device is turned off &
we don’t know the passcode?

In this talk
◆ out-side the box(locked phone) -> Non-Secure EL1

Non-secure World

User Mode

SVC/Sys/Abort Mode

Hypervisor Mode

Secure World

User Mode

SVC/Sys/Abort Mode

Monitor Mode

EL0

EL1

EL2

EL3

S-Boot Boot Flow

Init

Verify boot image

Boot into kernel

Set monitor mode

Check boot mode ODIN modevolumn down + power

ODIN mode
◆ Flash stock firmware

◆ Rollback prevention

Vulnerability I

Odin Request
◆ opCode

◆ 0x64 Odin mode initial & settings

◆ 0x65 Flash PIT

◆ 0x66 Flag image

◆ subOp

◆ Depends on opCode

◆ Maybe initialize, set, get …etc

◆ arg1 ~ arg4

◆ assign size or some value

Odin Flash Image Command
◆ No check for provided size

◆ Integer overflow

◆ Use 0xC0000000 if less then 0x1e00000

◆ Otherwise use 0xB0000000

◆ Copy to buffer

◆ S8 and before at 0xC0000000

◆ S9 and later at 0x880000000

Overflow the physical memory
0xC0000000

0xC9000000

sboot code
segment

sboot data
segmentstack

heap

heap

buffer for flash
image

0xC0000000

0xC9000000

data overwritten

filled with null

Bypass MMU
◆ S-Boot code segment at 0xC9000000 but read only

◆ USB devices have direct memory access

◆ Ignores mmu control

Cache Incoherency
◆ While receiving data, the CPU keeps tracking the USB event

◆ This code is cached

◆ Only the heap will not be cached

Code Execution
◆ The heap is not cached, the code accesses a pointer in the heap…

◆ Trigger data-abort as soon as we overwrite heap data with NULL

◆ Overwrite the error handler code with jump sled

◆ Put shellcode in front of the code segment

Overflow the physical memory
0xC0000000

0xC9000000

sboot code
segment

sboot data
segmentstack

heap

heap

buffer for flash
image

modified sboot
code segment

filled with null

filled with null

shellcode

0xC0000000

0xC9000000

But
◆ S9 and later are not exploitable

◆ The default buffer is changed to 0x880000000

◆ Spent half a year trying to exploit S10

Potential Exploit Path on S10
◆ In S9 and later, ODIN has parallel & compressed download mode

◆ It will boot up another 2 cpu cores, and set the image buffer to 0x880000000

◆ Fallback to normal download if boot cpu failure

◆ Buffer change back to 0xC0000000

Potential Exploit Path on S10
◆ Make CPU boot fail

Potential Exploit Path on S10
◆ Uart mode

◆ Cmd – smp_test

◆ Test Boot up a cpu core and shutdown immediately

◆ But count of booted cores will not decrease

◆ Cmd – download

◆ Enter Odin mode

Potential Exploit Path on S10
◆ Enter Uart Mode

◆ We need a debug cable to make S-Boot detect RID_523K

◆ Tried TypeC VDM mode, accessory mode, pull-down pull-up resistor

◆ All failed

 We reported the bug on Aug 2019

Result: Duplicated

Patch Note
◆ Samsung Security Update - October 2019

◆ SVE-2019-15230 Potential Integer overflow in Bootloader

The Patch

Vulnerability II

Aligned Size?

Odin - packet data size
◆ We can set packet data size with opCode 0x64, subOp 0x05

Exploit
◆ Bypass the check

◆ The usb receive size can be larger than 0x10000000 again

◆ Achieve code execution in the same way as the previous vulnerability

I reported the bug immediately

Patch Note
◆ Samsung Security Update - Jan 2020

The Patch

Vulnerability III

ODIN – PIT flash command
◆ opCode = 0x65

◆ PIT is very small, odin store it to heap buffer

◆ With the size 0x2000

The patch of vulnerability II
◆ Size of packet data can be upto 0xFFFFFF

◆ > 0x2000 => heap overflow

Pseudo code - receive data
◆ This is a pseudocode representation of the receive operation

◆ In our test, the usb_recv function will receive until the passed size is reached

◆ Even if we send data with a huge interval

We thought this was
un-exploitable, so I stuck to

vulnerability I

How About Interrupting the USB
◆ Remove and Re-insert the USB cable

◆ the usb_recv returns with insufficient size

Heap overflow
◆ We can overwrite the metadata

of heap chunk

◆ House of Spirit

Heap

size unused
prev
next

data

size unused
prev
next

data

size unused
prev
next

data

Fake Chunk
No check for double linked list

faked chunk

size unused
prev
next

data

size unused
prev
next

data

size unused
prev
next

data

Limited Overwrite Data
◆ *prev + 4 = 1

◆ It aarch64, integer 64 bit

◆ Code at 0xC9000000

◆ We can not point to

◆ Got

◆ Function pointer

faked chunk

size unused
prev
next

data

size unused = 1
prev
next

data

size unused
prev
next

data

Free

Overwrite RIP in stack
◆ The only chance is to overwrite a return

address on stack

◆ Only 3 function calls

◆ Fortunately

◆ Odin cmd buf is the first local variable

Stack

SP
PC

local variable

local variable

SP
PC

local variable

SP
PC

Stack

SP
PC

local variable

local variable

SP
PC

local variable

SP
PC

size unused
prev
next

data

size unused
prev
next

data

Odin cmd buf

After Code Execution in S-boot

Boot the phone
◆ We smashed the stack & heap

◆ Hard to recover

◆ Call the boot functions one by one

sboot code
segment

sboot data
segmentstack

heap

heap

buffer for
flash image

modified
sboot code

segment

filled with null

filled with null

shellcode

Skip Trustzone related calls
◆ We only have EL1 privilege

◆ Some smc calls to trustzone can not be called twice

◆ Skip the smc calls and set the related parameters

Load Custom Kernel
◆ After loading the kernel to memory (the function cmd_load_kernel)

◆ Replace the image with a custom one

◆ Boot the kernel (call the function cmd_boot)

Exploit
◆ Set the size of packet data to a big number

◆ Send Odin PIT flash command

◆ Send payload after Interrupt the usb_recv(), leads to heap overflow

◆ Send Another Odin command to trigger malloc & free the buffer

◆ Overwrite RIP on stack, jump to shellcode

◆ Re-init heap and stack

◆ Continue booting

◆ Before boot into kernel, replace the boot image

We got el1 in normal world

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

But the phone is still locked

Can not read sensitive data
◆ Storage is still encrypted if we didn’t provide the screen passcode

◆ Encryption key can only be decrypted in the gatekeeper trustlet

◆ Some data in trustlet can not be reached

Man in the Non-secure EL1
◆ Wait for the user to unlock the phone

◆ Hijack / Sniff everything between non-secure world and secure world

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

Exposed Attacking surface
◆ Attacking secure world trustlet

◆ Gatekeeper trustlet

◆ Samsung Pay trustlet

◆ Keystore trustlet

◆ …

◆ Many vulnerabilities in the past

Non-secure World

User Mode

Kernel Mode

Hypervisor Mode

Secure World

User Mode

Kernel Mode

Monitor Mode

EL0

EL1

EL2

EL3

Attack the gatekeeper trustlet to decrypt storage
◆ SVE-2019-14575

◆ With this vulnerability, we can try all the possible pattern codes in a few hours.

Sensitive Data unlocked

Conclusion
◆ Even if the data is stored in secure world, it doesn’t mean it’s 100% secure

◆ But it’s made exploiting complex, multiple actions are needed to retrieve the data

◆ Landing - RCE / Local USB Exploit / Social Engineering

◆ Privilege escalation to non-secure EL1

◆ Vulnerabilities in trustlet to get into secure-world EL0

◆ Privilege escalation from secure-world EL0 to secure-world EL1 or EL3

◆ Without all of this, especially the points in red, the data in the phone is still safe

Disclosure Timeline

◆ 2019-10-02 Report Vulnerability I
◆ 2019-10-08 Informed Vulnerability I duplicated
◆ 2019-10-11 Report Vulnerability II
◆ 2020-01-06 Samsung Patched, SVE-2019-15872
◆ 2020-01-21 Report Vulnerability III
◆ 2020-05-06 Samsung Patched, SVE-2020-16712

Jeffxx
jeffxx@trapasecurity.com

THANK YOU!

