..
networks :
i ' . - "“]7
-ty V- Nt
f (@ : W
P — R =)
4 //:‘ G : -
} =3

) txOne By ke

PENecro: Enabling dynamic analysis of Lég?éy

Embedded Systems in full emulated environment
: /

Ta-Lun Yen
TXOne 10T/ICS Security Research Labs (;,ITrend Micro)

$(whoami)

e @evanslify

* Researcher @ TXOne
Networks (Trend Micro),
2019/11-present

* Reverse Engineering,
protocol analysis, wireless,
hardware

2 xQne

Outline

* Our goals & Background of Windows CE6

 CEG6 Bootloader & power-on initialization

* Inside CEG6 Application Loader & Memory management
* Reconstructing extracted binaries to dynamic execution
* Conclusion

FLOne

Our goal

 Emulate CE6 image from device with QEMU
* We don’t want to buy every hardware for research
- We ended up buying one actually (for comparison)
e Serial ports & debugger is not present on every hardware

FLOne

Background of Windows CEG6

Ay

®

Windows
Embedded CE

5 2021-11-28 g ntg&ggpe“

Horrors from the ancient

 WInCE hasn’t been actively exploited
— Found cryptojack recently!

* It runs everywhere

- Cars, Parking meters, aircraft IFEs,
subway turnstiles, medical devices
power plants...

Difference between {NT, CE}

* Microsoft Shared Source Initiative: (partial) source code
* Loosely adheres to NT APIs and behavior
e (Soft) Real-time OS

2 xQne

Difference between {NT, CE}

* While having different APIls and behaviors between CE and NT...
* Some exploits and techniques might work on both CE & NT
- ...with some efforts, e.g MS17-010 [1]

[1] https://www.fracturelabs.com/posts/2017/exploiting-ms17-010-on-windows-embedded-7-
devices/

2 xQne

Current methods to study CEG6 firmware

File extraction
— https://github.com/nlitsme/eimgfs (was dumprom)

Dynamic debugger
— CeGCC http://cegcc.sourceforge.net/

Mass storage & extract files (unlikely for drivers)

Limitations

— You cannot run them in your environment with MS emulator or
QEMU... until now

https://github.com/nlitsme/eimgfs
http://cegcc.sourceforge.net/

Round 1
Straight up & go to emulation

10 2021-11-28 g ntggﬁpe

CEG6 Booting process

* BIOS bootloader / DOS loader (loadcepc.exe)
* Similar to most embedded x86’s

- Hardware & platform initialization

- Load & start the OS

— Having access to serial / KITL would be great

* At this point, we assume its just like any x86 machine, and easy
to QEMU

2 xQne

CEG6 Firmware format

e “BO0O0OFF format” struct BIN_HEADER {
char[7] Signature; // BOOOFF\n signature

— .bin for properly packed format

 Can be used with DOS DWORD ImageStart; // Image Start
DWORD ImagelLength; // Image Length
- .nbO for 1:1 RAM BeLEnSth; & &

b5
* Can only be used with BIOS
struct BIN_BLOCK {

DWORD Address; // memory address
 Our target contains a .nb0, DWORD - S1ze;

it : DWORD Check ; CRC32
and we can convert it into a .bin . ecksum; //

- By specifying a address from the start
of .nb0

g txOne

networks

Our 1°t failed approach

* Kernel loads, partial initialization can be done
* But, it never fully boot to desktop

2916: RF: start: s7ontcpDLL: Rel V 1.78
2917: RFC: DLL_PROCESS_ATTACH at cl@ad4@bl
2920: Exception 'Access V] (14): Thread-Id=03540002(pth=82TT4bb8), Proc-Id=00400002(pprc=824af8E

@) 'NK.EXE', VM-active=00400002(pprc=5824at800) 'NK.EXE'

2921: PC=4002eb@b6(coredll.dl1+0x0001eb®6) RA=4002eac8(coredll.dl1+8x0001eac8) SP=d@97f66@8, BVA=0000000S8
2922: Exception 'Raised Exception' (-1): Thread-Id=03540002(pth=82ff4bb8), Proc-Id=00400002(pprc=824af8e
@) 'NK.EXE', VM-active=00400002(pprc=824af80@0) 'NK.EXE'

2924: PC=c@@054a08(k.coredll.dl1+0x00014a08) RA=c@054a58(k.coredll.dl1+0x00014a58) SP=d@97fedc, BVA=TTTT{
fff

2 xQne

Our 1°t failed approach

e Hardware differences in QEMU and actual device
- AMD Geode(!) vs. Q35/i440FX (QEMU)

* |tis naive to assume this would work straightforward!
- Need to have corresponding devices in QEMU
- 1/O points, special flash memory, etc

* Approach is very time-consuming

- Patched multiple if-else, I/O checks, an graphics driver

2 xQne

What we learned

 QEMU-lating an image as-is is very, very difficult
* Device-specific modification must be made
* Binary patching on this scale is very unpleasant

WIIBI(ING;IIAIIII
\} l»

,./l/

ORHARDLY'WORK Il:‘u=l

15 | 2021-11-28 g Q&QDG“

Round 2
Application loader/Memory management

16 | 2021-11-28 =3 txOne

CEG6 Application loader

e Straight up emulation does not work
- What if we can move binaries from another image to our own?
— All of drivers, libraries, etc
e Figure out if we can:
- Extract driver & files from image
— Build our own image

- Make extracted files run in our image

CEG6 Application loader

e Straight up emulation does not work
- What if we can move binaries from another image to our own?
— All of drivers, libraries, etc
e Figure out if we can:
- Extract driver & files from image - Yes, using eimgfs
— Build our own image - Yes, CE6 SDK
- Make extracted files run in our image - It crashed right away (???)

CEG6 Application loader

 Like NT.... Or not
* Kernel parses PE header, loads libraries,
allocate memories, and run the PE
* If ImageBase is fixed, and the address is already used,

the kernel assigns a next free page.
- Without .reloc, it will not fail (in CE6)
- This causes kernel to crash most of the time

2 xQne

.reloc

* Relocation
* Used the PE is loaded at a different ImageBase
* push <addr>/ call [<addr>] will be added to .reloc

2 xQne

Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Debug tool

21 2021-11-28 g Q&OC%I']G

Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfsy

Debug tool

22 2021-11-28 g Q&OC%I']G

Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initrgggayy’e =

5 .‘ bug tool

23 | 2021-11-28 3 txOne

CE6 Memory Management

e CEG6 does not use “slots”
— Each process has 1GB virtual

memory

* Flashes are usually XIP, to
save loading times

- Most drivers & frequently
used PE has fixed addresses

https://gist.github.com/udaken/
f70b5a4c453fe64cb548a10dc85a27ed

OXFFFFFFFF
CPU Specific VM

Kernel VM
256 /512 MB

Object Store (128MB)

Kernel XIP DLLs (128 MB)

Static Mapped Uncached
512 MB

Static Mapped Cached
512 MB

0x80000000 s

} System Trap Area

Kernel Virtual Memory

> Shared by all kernel

Servers and drivers

Ram file system & ram registry

All XIP DLLs in kernel

-

- Uncached access to
physical memory

» Cached access to
physical memory

3 txOne

networks

CEG6 & SDK: How it pack files

* Visual Studio + CE6 SDK
- Everything is packed into BOOOFF format
- Unessential segments, including .reloc is stripped
— Optionally convert into .nb0

 cl.exe - link.exe - bundled image

requires .reloc .reloc is stripped

2 xQne

What we want to do:

* Extract files using eimgfs and rebundling with our own environment
— Access to KITL and WinDbg
— Bundle our own files & tools

* Conclusion: .reloc must be reconstructed

— .reloc is required for loader to edit addresses on the fly,
should the binary is not loaded in originally intended address

- Image packer requires this information to write static addresses
(binaries in .nb0/.bin have fixed addresses)

Our approach:

Static reconstruction of relocation
iInformation in PE

27 2021-11-28 g ntggﬁpe

Our approach

* Try our best to reconstruct .reloc and make binaries work again
* Prior art: Dynamic analysis only [1]

[1] http://www.cs.columbia.edu/~vpappas/papers/reloc.raid14.pdf

Our approach

e We know where PE starts and where it ends

 Look for all addresses needs to be relocated, and re-write
our .reloc segment.

- ImageBase ~ (ImageBase+SizeOflmage)
e Brute-force search through entire binary

2 xQne

Our approach (code segment)

* Locate all function epilouge and prolouge

* |terate through each function & check every instruction’s
operand

- If its referencing somewhere in the binary, relocate the address

2 xQne

Our approach (non-code segments)

* vtable, string tables, etc
* Conveniently 4-byte aligned
* Look for any 4-byte pointing into the PE

2 xQne

Our approach (quirks)

* |t still doesn’t work... and missing a ton of .reloc entries
* Import Address Table

typedef struct _IMAGE_THUNK_DATA32 {
union {
LPBYTE ForwarderString;
PDWORD Function;
DWORD Ordinal;

PIMAGE_IMPORT_BY_NAME AddressOfData; // IMAGE_IMPORT_BY_NAME (RVA)

}

}
typedef _IMAGE_THUNK_DATA32 * PIMAGE_THUNK_DATA;

AddressOfData can be char* and must be added to .reloc

FxOne

Our approach (finally)

* Rebuild our .reloc, and recompile our own CE image!

typedef struct _IMAGE_BASE_RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;

// WORD TypeOffset[1];

} IMAGE_BASE_RELOCATION;

typedef struct {
unsigned long r_vaddr; /* address of relocation

unsigned long r_symndx; /*x symbol we're adjusting for x/

unsigned short r_type; /* type of relocation
RELOC; //COFF relocation table entry

txOne

networks

Demo: We run your device without your
hardware

34 2021-11-28 g ntggﬁpe

PArgs->ipdaddress. ...
pDevice-=Name.

|PDevice—>ifcType..

dpDevice->id... 4 0x802910EC
| "pDevice->resource.
ApDevice->type........

jPDevice—>pDriver.....

«+.. 0Xx80D1703C
TEDBG:NE2000Init

|EDBG:NE2000Init using I/0 range at 0x0000C000
EDBG:NE2000:HWRamTest: srambase: 0X00004000, sramsize: 0x00008000, ps
dtart: ox46

April 2021] Current Time
A

2 Time Zone y |
|Ne2kDbg: : HWSetMCRegs():: Set all to oxee 1382810 [— [settings
Talm Yen |-EDBG:NE2000Init 1; ig e I ! [V] Automaticaly adjust clack for daylight Saving
x86KitlCreateName: Using Device N Y o 23l N E
—— T . A 3 2 Apd Ehcaoca2 - HTaskbar
P e OALKitlCreateName: Using Device Name 'CEPC29642'
e e i Ym—y T3, 200 KITL: *%* Device Name CEPC29642 #*x% ==
e Vemmny 732001 | g : m Prap
\KITL: using sysintr ox1@ m - S RY
v eneral | Bevi | iahts |
KITL: DHCP get/renew device IP: 1 g bemof| Defi s c.:pyng:ts :
VBridge:: i i 127:) 2 3 d
Br% % ‘bullt Sifiteshiie 2006] Bt inc ez 131 Microsoft® Windows® CE Processar Type: [Intel Carp., 486 ;
.VGrldgeInlt()...TX = [16384] bytes —- Rx = [16384] bytes Version 6,00 (Buld 3122) 'Expanslnnsluts:,———m
{Tx buffer [0xA@D58520] to [0xA@D5C520] . f I e e
Rx buffer [0xA@D5C540]1 to [0xA@D60540]. ‘©ZDDGdntli%gsoftCDrEe.All'rights‘ Memory: = 489816 KB RAM
eserved. This camputer program s | [~ 4 4
VBridge:: NK add MAC: [SA-E8-67-CC-73-CA] e f;‘dlnfem%’t!m,‘; Registered to:
1Connecting to Desktop copyrght laws. ¥ o1
‘KITL: Connected host IP: 1 Port: 4165

IKITL: Leaving polling mode... 0x80D48080
IClosing Handle of Timer Thread

|Reserve KITL IRQ: No IRQ reserved, KITL NIC IRQ may be shared with ot
iher devices.

|\VBridge:: VB_INITIALIZED returns [1] &/start || [vy Device ’
{VBridge:: RESET_BUFFER received.
built on [Sep 6 2006] time [19:27:13]

Start Center | |[3Control Panel || 9 System Pr ’ gﬁnaterrunel..,g,smm I

Ta-Lun Yen

StartCenter] | | QEMU'd CE

= txQne

With our method...

* You can totally run bundled CEG6 binaries without hardware!
— Dynamic analysis / Fuzzing on the “device”
- Testing without real hardware
* This method enables use of KITL, Serial outputs, WinDbg
 Our accuracy is EXCELLENT: >99.8% ~ 100%
— Comparing our reconstructed .reloc counts with original DLLs

2 xQne

Suggestions for vendors & Remarks

* Anything bundled within firmware will be extracted & being
looked at

* Proprietary format does not preventing breaking in
* Friendly community / researcher outreach is noble

2 xQne

Future work & Mentions

* Combine this with [insert any fuzzer here]
- Yes, if ported to CE
— For simple programs https://github.com/mauricek/wcecompat

e A good reference helps very much

Windows
C e . Embedded CE 6.0
 Thank you, MSFT, for shared-source initiative Fundamentals

— It will be next to impossible to achieve this without it

https://github.com/mauricek/wcecompat

Remarks

* We will start to see CE-targeted campaigns/malwares
 Most EDR/AV does not work on CE
 Anew wild west?

2 xQne

Questions?

* Send to “talun_yen at trendmicro dot com”
* GitHub: https://github.com/evanslify/pe-necro

2 xQne

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

