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Outline

* Our goals & Background of Windows CE6

 CEG6 Bootloader & power-on initialization

* Inside CEG6 Application Loader & Memory management
* Reconstructing extracted binaries to dynamic execution
* Conclusion
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Our goal

 Emulate CE6 image from device with QEMU
* We don’t want to buy every hardware for research
- We ended up buying one actually (for comparison)
e Serial ports & debugger is not present on every hardware

FLOne



Background of Windows CEG6

Ay

®

Windows
Embedded CE
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Horrors from the ancient

 WInCE hasn’t been actively exploited
— Found cryptojack recently!

* It runs everywhere

- Cars, Parking meters, aircraft IFEs,
subway turnstiles, medical devices
power plants...



Difference between {NT, CE}

* Microsoft Shared Source Initiative: (partial) source code
* Loosely adheres to NT APIs and behavior
e (Soft) Real-time OS
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Difference between {NT, CE}

* While having different APIls and behaviors between CE and NT...
* Some exploits and techniques might work on both CE & NT
- ...with some efforts, e.g MS17-010 [1]

[1] https://www.fracturelabs.com/posts/2017/exploiting-ms17-010-on-windows-embedded-7-
devices/
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Current methods to study CEG6 firmware

File extraction
— https://github.com/nlitsme/eimgfs (was dumprom)

Dynamic debugger
— CeGCC http://cegcc.sourceforge.net/

Mass storage & extract files (unlikely for drivers)

Limitations

— You cannot run them in your environment with MS emulator or
QEMU... until now


https://github.com/nlitsme/eimgfs
http://cegcc.sourceforge.net/

Round 1
Straight up & go to emulation
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CEG6 Booting process

* BIOS bootloader / DOS loader (loadcepc.exe)
* Similar to most embedded x86’s

- Hardware & platform initialization

- Load & start the OS

— Having access to serial / KITL would be great

* At this point, we assume its just like any x86 machine, and easy
to QEMU
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CEG6 Firmware format

e “BO0O0OFF format” struct BIN_HEADER {
char[7] Signature; // BOOOFF\n signature

— .bin for properly packed format

 Can be used with DOS DWORD ImageStart; // Image Start
DWORD ImagelLength; // Image Length
- .nbO for 1:1 RAM BeLEnSth; & &

b5
* Can only be used with BIOS
struct BIN_BLOCK {

DWORD Address; // memory address
 Our target contains a .nb0, DWORD - S1ze;

it : DWORD Check ; CRC32
and we can convert it into a .bin . ecksum; //

- By specifying a address from the start
of .nb0

g txOne
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Our 1°t failed approach

* Kernel loads, partial initialization can be done
* But, it never fully boot to desktop

2916: RF: start: s7ontcpDLL: Rel V 1.78
2917: RFC: DLL_PROCESS_ATTACH at cl@ad4@bl
2920: Exception 'Access V] (14): Thread-Id=03540002(pth=82TT4bb8), Proc-Id=00400002(pprc=824af8E

@) 'NK.EXE', VM-active=00400002(pprc=5824at800) 'NK.EXE'

2921: PC=4002eb@b6(coredll.dl1+0x0001eb®6) RA=4002eac8(coredll.dl1+8x0001eac8) SP=d@97f66@8, BVA=0000000S8
2922: Exception 'Raised Exception' (-1): Thread-Id=03540002(pth=82ff4bb8), Proc-Id=00400002(pprc=824af8e
@) 'NK.EXE', VM-active=00400002(pprc=824af80@0) 'NK.EXE'

2924: PC=c@@054a08(k.coredll.dl1+0x00014a08) RA=c@054a58(k.coredll.dl1+0x00014a58) SP=d@97fedc, BVA=TTTT{
fff
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Our 1°t failed approach

e Hardware differences in QEMU and actual device
- AMD Geode(!) vs. Q35/i440FX (QEMU)

* |tis naive to assume this would work straightforward!
- Need to have corresponding devices in QEMU
- 1/O points, special flash memory, etc

* Approach is very time-consuming

- Patched multiple if-else, I/O checks, an graphics driver
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What we learned

 QEMU-lating an image as-is is very, very difficult
* Device-specific modification must be made
* Binary patching on this scale is very unpleasant

WIIBI(ING;IIAIIII
\} l»
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Round 2
Application loader/Memory management

16 | 2021-11-28 =3 txOne



CEG6 Application loader

e Straight up emulation does not work
- What if we can move binaries from another image to our own?
— All of drivers, libraries, etc
e Figure out if we can:
- Extract driver & files from image
— Build our own image

- Make extracted files run in our image



CEG6 Application loader

e Straight up emulation does not work
- What if we can move binaries from another image to our own?
— All of drivers, libraries, etc
e Figure out if we can:
- Extract driver & files from image - Yes, using eimgfs
— Build our own image - Yes, CE6 SDK
- Make extracted files run in our image - It crashed right away (???)



CEG6 Application loader

 Like NT.... Or not
* Kernel parses PE header, loads libraries,
allocate memories, and run the PE
* If ImageBase is fixed, and the address is already used,

the kernel assigns a next free page.
- Without .reloc, it will not fail (in CE6)
- This causes kernel to crash most of the time

2 xQne



.reloc

* Relocation
* Used the PE is loaded at a different ImageBase
* push <addr>/ call [<addr>] will be added to .reloc

2 xQne



Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Debug tool
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Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfsy

Debug tool
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Moving files from an image to another

.nbO file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

.nbO file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initrgggayy’e =

5 .‘ bug tool
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CE6 Memory Management

e CEG6 does not use “slots”
— Each process has 1GB virtual

memory

* Flashes are usually XIP, to
save loading times

- Most drivers & frequently
used PE has fixed addresses

https://gist.github.com/udaken/
f70b5a4c453fe64cb548a10dc85a27ed

OXFFFFFFFF
CPU Specific VM

Kernel VM
256 /512 MB

Object Store (128MB)

Kernel XIP DLLs (128 MB)

Static Mapped Uncached
512 MB

Static Mapped Cached
512 MB

0x80000000 s

} System Trap Area

Kernel Virtual Memory

> Shared by all kernel

Servers and drivers

Ram file system & ram registry

All XIP DLLs in kernel

-

- Uncached access to
physical memory

» Cached access to
physical memory

3 txOne
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CEG6 & SDK: How it pack files

* Visual Studio + CE6 SDK
- Everything is packed into BOOOFF format
- Unessential segments, including .reloc is stripped
— Optionally convert into .nb0

 cl.exe - link.exe - bundled image

requires .reloc .reloc is stripped

2 xQne



What we want to do:

* Extract files using eimgfs and rebundling with our own environment
— Access to KITL and WinDbg
— Bundle our own files & tools

* Conclusion: .reloc must be reconstructed

— .reloc is required for loader to edit addresses on the fly,
should the binary is not loaded in originally intended address

- Image packer requires this information to write static addresses
(binaries in .nb0/.bin have fixed addresses)



Our approach:

Static reconstruction of relocation
iInformation in PE
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Our approach

* Try our best to reconstruct .reloc and make binaries work again
* Prior art: Dynamic analysis only [1]

[1] http://www.cs.columbia.edu/~vpappas/papers/reloc.raid14.pdf



Our approach

e We know where PE starts and where it ends

 Look for all addresses needs to be relocated, and re-write
our .reloc segment.

- ImageBase ~ (ImageBase+SizeOflmage)
e Brute-force search through entire binary
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Our approach (code segment)

* Locate all function epilouge and prolouge

* |terate through each function & check every instruction’s
operand

- If its referencing somewhere in the binary, relocate the address
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Our approach (non-code segments)

* vtable, string tables, etc
* Conveniently 4-byte aligned
* Look for any 4-byte pointing into the PE

2 xQne



Our approach (quirks)

* |t still doesn’t work... and missing a ton of .reloc entries
* Import Address Table

typedef struct _IMAGE_THUNK_DATA32 {
union {
LPBYTE ForwarderString;
PDWORD Function;
DWORD Ordinal;

PIMAGE_IMPORT_BY_NAME AddressOfData; // IMAGE_IMPORT_BY_NAME (RVA)

}

}
typedef _IMAGE_THUNK_DATA32 * PIMAGE_THUNK_DATA;

AddressOfData can be char* and must be added to .reloc

FxOne



Our approach (finally)

* Rebuild our .reloc, and recompile our own CE image!

typedef struct _IMAGE_BASE_RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;

// WORD TypeOffset[1];

} IMAGE_BASE_RELOCATION;

typedef struct {
unsigned long r_vaddr; /* address of relocation

unsigned long r_symndx; /*x symbol we're adjusting for x/

unsigned short r_type; /* type of relocation
RELOC; //COFF relocation table entry

txOne
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Demo: We run your device without your
hardware
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PArgs->ipdaddress. ...
pDevice-=Name.

|PDevice—>ifcType..

dpDevice->id... 4 0x802910EC
| "pDevice->resource.
ApDevice->type........

jPDevice—>pDriver.....

«+.. 0Xx80D1703C
TEDBG:NE2000Init

|EDBG:NE2000Init using I/0 range at 0x0000C000
EDBG:NE2000:HWRamTest: srambase: 0X00004000, sramsize: 0x00008000, ps
dtart: ox46

April 2021 ] Current Time
A

2 Time Zone y |
|Ne2kDbg: : HWSetMCRegs():: Set all to oxee 1382810 [ — [ settings
Talm Yen |-EDBG:NE2000Init 1; ig e I ! [V] Automaticaly adjust clack for daylight Saving
x86KitlCreateName: Using Device N Y o 23l N E
—— T . A 3 2 Apd Ehcaoca2 - HTaskbar
P e OALKitlCreateName: Using Device Name 'CEPC29642'
e e i Ym—y T3, 200 KITL: *%* Device Name CEPC29642 #*x% ==
e Vemmny 732001 | g : m Prap
\KITL: using sysintr ox1@ m - S RY
v eneral | Bevi | iahts |
KITL: DHCP get/renew device IP: 1 g bemof| Defi s c.:pyng:ts :
VBridge:: i i 127: ) 2 3 d
Br% % ‘bullt Sifiteshiie 2006 ] Bt inc ez 131 Microsoft® Windows® CE Processar Type: [Intel Carp., 486 ;
.VGrldgeInlt()...TX = [16384] bytes —- Rx = [16384] bytes Version 6,00 (Buld 3122) 'Expanslnnsluts:,———m
{Tx buffer [0xA@D58520] to [0xA@D5C520] . f I e e
Rx buffer [0xA@D5C540]1 to [0xA@D60540]. ‘©ZDDGdntli%gsoftCDrEe.All'rights‘ Memory: = 489816 KB RAM
eserved. This camputer program s | [~ 4 4
VBridge:: NK add MAC: [SA-E8-67-CC-73-CA] e f;‘dlnfem%’t!m,‘; Registered to:
1Connecting to Desktop copyrght laws. ¥ o1
‘KITL: Connected host IP: 1 Port: 4165

IKITL: Leaving polling mode... 0x80D48080
IClosing Handle of Timer Thread

|Reserve KITL IRQ: No IRQ reserved, KITL NIC IRQ may be shared with ot
iher devices.

|\VBridge:: VB_INITIALIZED returns [1] &/start || [ vy Device ’
{VBridge:: RESET_BUFFER received.
built on [Sep 6 2006] time [19:27:13]

Start Center | |[3Control Panel || 9 System Pr ’ gﬁnaterrunel..,g,smm I

Ta-Lun Yen

StartCenter] | | QEMU'd CE
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With our method...

* You can totally run bundled CEG6 binaries without hardware!
— Dynamic analysis / Fuzzing on the “device”
- Testing without real hardware
* This method enables use of KITL, Serial outputs, WinDbg
 Our accuracy is EXCELLENT: >99.8% ~ 100%
— Comparing our reconstructed .reloc counts with original DLLs
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Suggestions for vendors & Remarks

* Anything bundled within firmware will be extracted & being
looked at

* Proprietary format does not preventing breaking in
* Friendly community / researcher outreach is noble
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Future work & Mentions

* Combine this with [insert any fuzzer here]
- Yes, if ported to CE
— For simple programs https://github.com/mauricek/wcecompat

e A good reference helps very much

Windows
C e . Embedded CE 6.0
 Thank you, MSFT, for shared-source initiative Fundamentals

— It will be next to impossible to achieve this without it



https://github.com/mauricek/wcecompat

Remarks

* We will start to see CE-targeted campaigns/malwares
 Most EDR/AV does not work on CE
 Anew wild west?
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Questions?

* Send to “talun_yen at trendmicro dot com”
* GitHub: https://github.com/evanslify/pe-necro

2 xQne
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