
ELECTRONizing macOS
privacy
A NEW WEAPON IN YOUR RED TEAMING ARMORY

Whoami?

Wojciech Reguła
Head of Mobile Security at

• Focused on iOS/macOS #appsec
• Blogger – https://wojciechregula.blog
• iOS Security Suite Creator
• macOS environments security

Agenda

1. TCC / privacy fundamentals on macOS
2. The problem with Electron applications
3. Granted TCC permissions inheritance
4. Electroniz3r presentation (demo time)
5. Detections
6. Conclusion

TCC / privacy fundamentals on macOS

TCC / privacy fundamentals on macOS

System Integrity Protection (SIP)
• Based on Sandbox kernel extension
• Restricts access to many directories on macOS
• Denies debugger attachments to processes signed directly by Apple
• Also known as rootless, because even root cannot do the above-

mentioned operations when the SIP is turned on
• When turned on (default configuration) – Transparency, Consent and

Control (TCC) comes into play

TCC / privacy fundamentals on macOS

TCC / privacy fundamentals on macOS

What resources are privacy-sensitive according to Apple?

TCC / privacy fundamentals on macOS

TCC / privacy fundamentals on macOS

TCC / privacy
fundamentals
on macOS –
private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS – private
entitlements

TCC / privacy fundamentals on macOS

• SQLite 3 database
• User: ~/Library/Application Support/com.apple.TCC
• Global: /Library/Application Support/com.apple.TCC

The problem with Electron applications

The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code

Execution kill chains…

The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code

Execution kill chains…
• On macOS popular Electron apps require granting TCC permissions

The problem with Electron applications

The problem with Electron applications

In the past, there was a code
injection possible by definition

…but macOS Ventura ruined fixed 😊 that technique

Granted TCC permissions inheritance

Granted TCC permissions inheritance

• TCC inheritance system is complicated and caused many vulnerabilities in
the past (e.g., CVE-2020-10008, CVE-2021-1824)

• From time to time, Apple changes details in the TCC permissions
inheritance system

• Generally speaking (may not always be true):
• When an app has private TCC entitlements – its permissions are not inherited

by other apps they spawn
• When an app has TCC permission granted by the user (User clicked “OK”

in the prompt) - its permissions are inherited

Granted TCC permissions inheritance

• Electron apps always have permissions granted by the users, so their TCC
permissions will be inherited by children processes

• If only there was a code injection technique that doesn’t break the macOS
Ventura App Protection mechanism…

INTRODUCING ELECTRONIZ3R

electroniz3r

• Electron apps are like websites with embedded web browsers: you can
open Dev Tools and execute JavaScript within their context

• By default, Electron apps allow users to spawn them with Web Inspector
API turned on, using --inspect flag

electroniz3r
unauthorized access to user’s desktop

via Visual Studio Code

electroniz3r
unauthorized access to user’s camera

via MS Teams

OK, but what if the Electron app
disabled --inspect flag?

Let’s take Slack.app for example

So, theoretically if the
Electron app disables
library validation…🤔

electroniz3r
injecting to an older Slack version

DETECTIONS

🔎

Detecions

ES_EVENT_TYPE_NOTIFY_EXEC {
[…]
"context" : ”app_path --inspect=13337”
[…]

}

Summing up

Wojciech Reguła
Head of Mobile Security at SecuRing

@_r3ggi wojciech-regula

Thank you!

