
Reaching Beyond  
Out-of-Bounds Exploration in
Out-of-Band Management

kevingwn

Boundaries

• Synology Security Incident Response Team 

• Balsn CTF Team 

• Top 3 at DEFCON CTF, HITCON CTF 

• Speaker of Cybersec 2023 

• Reported vulnerability to TP-Link, Netgear, Realtek, etc. 

 Kevin Wang (@kevingwn_)

Outline 

● Introduction 

● Analysis 

● Vulnerabilities 

● Mitigation 

● Conclusion 

Introduction 

Synology DS3622xs+ 

• Has an individual out-of-band port

• Isolated environment

• Our Target!

Out-of-Band Management 

• SSH over separate channel

• Its own processor, memory, …

• Custom shell after login

• Administration functionalities

• Power on/off, monitor logs, …

Analysis 

• MIPS 32 bit

• Realtek self-defined firmware structure

• Can serve multiple SSH connection at a time

• Custom shell… must have a lot of command parsing

Initial Discoveries 

• Bingo! Using command power AAAAAAAAAAAAAAAAAAA...

• Stack Overflow ⇒ system("ls") ⇒ Post-auth RCE

• If we find an authentication vulnerability, it becomes Pre-auth RCE!

• Bingo! Using command power AAAAAAAAAAAAAAAAAAA...

• Stack Overflow ⇒ system("ls") ⇒ Post-auth RCE

• If we find an authentication vulnerability, it becomes Pre-auth RCE!

Easy Peasy!

Too Naive… 

Command length > 2 is dropped, only quick commands (0-9)

Too Naive… 

Command length > 2 is dropped, only quick commands (0-9)

「逃避可恥，但有用。」 

• Firmware is modified from µC/OS, there’s no shell

• Objcopy binary, hard to reverse

• No debugger, memory layout is unknown

• ASLR? Canary?

Further Analysis 

https://github.com/weston-embedded/uC-OS2

Remember our dream exploit chain?

• Authentication vulnerability ⇒ post-auth stack overflow ⇒ RCE

• A pre-auth vulnerability is needed anyway

SSH Protocol 

• The only attack surface is SSH

• SSH is modified from Dropbear SSH

• What can be done prior to SSH authentication

• Enter username and password? Public key authentication?

https://github.com/mkj/dropbear

SSH messages with number ≤ 60 can be performed before authentication

Vulnerabilities 

ssh_process 

• After key exchange, cipher_mode will be

set and all packets will be encrypted

decrypt_packet 

• The format of ssh msg:

|len1|msg1|len2|msg2|...|

• buf is a malloced buffer of size 1500

Heap Overflow 

• packet_len is controlled by user

|len1|msg1|len2|msg2|...|

• If given > 1500, we can overflow buf

Wait a minute…

1500 is a relatively small value, wouldn’t the vulnerability be

easily triggered even on normal situations?

Actually, if we enter 2000 "A", the heap overflow will not be triggered

• During SSH_MSG_CHANNEL_OPEN, server and client will agree on

remote_maxpacket, and the following messages will not violate it

µC/OS Memory Management 

• There’s no ASLR ٩(๑•̀ω•́๑)۶

• A fixed large segment of memory is divided

into chunks of 10 different sizes:

● 0x0008

● 0x0100

● 0x0010

● 0x0200

● 0x0020

● 0x0600

● 0x0040

● 0x0800

● 0x0080

● 0x1000

．．．

chunks 0x0008

chunks 0x0010

chunks 0x1000

size 0x0008 size 0x0010 ．．． size 0x1000

• Chunks of the same are stored in a linked list

• malloc(size):

• The first chunk > size is served

• If no chunks left ⇒ error

• free(ptr):

• Return to corresponding list according to its address

• It’s like tcache without checks!

Tcache Poisoning 

• Chunks A, B, C, D are continuous

• Chunk B is in use

size 0x100

A

B C

D

A

B

C

D

…

ABCD in memoryABCD in linked list

Tcache Poisoning 

• Heap overflow on B will overwrite C’s fd

• Let C point to anywhere we want

• If we malloc 0x100 3 times

• "anywhere" will be allocated

• Arbitrary memory write

size 0x100

A

B C

D

A

B

C

D

…

ABCD in memoryABCD in linked list

anywhere

decrypt_packet Exploitation 

• buf size is 1500 (0x5dc) ⇒ chunk 0x600

• If we can malloc chunk 0x600 3 times

• heap overflow ⇒ tcache poisoning ⇒ arbitrary write

• Couldn’t find anywhere mallocing chunk 0x600 3 times… இдஇ

• When logging in, username/password uses 511+1 (0x200) 3 times

512, 1 byte away from chunk 0x600…

(´•̥̥̥ω•̥̥̥`)

– Angelboy 10.17.2022

「排 heap 就是浪費時間，不如再找一個洞」

– Angelboy 10.17.2022

「排 heap 就是浪費時間，不如再找一個洞」

Can we "transfer" the poisoned chunk?

❌ Chunk 0x600 overflow ⇒ malloc 0x600 3 times to trigger

✔ Chunk 0x600 overflow ⇒ malloc 0x200 3 times to trigger

• Overwrite C’s fd so that it points to the middle of E

• Use E remanent value to point E' back to D

• Username/password uses chunk 0x200

size 0x600

A

D

size 0x200

E

F

GB

C

E'

• If we establish a second connection now

• Socket, mbedtls will allocate some buffers

• A, C, E' (the middle of E), D will be allocated

• E will also be allocated

size 0x600

A

D
size 0x200

E
F

G

B

C

E'

• Disconnect the second connection

• A, C, E' (the middle of E), D will be freed

• E' will be freed before E

• E' will be put on linked list 0x200

size 0x600

A

D

size 0x200

E

F

G

B

C
E'

size 0x600

A

D

size 0x200

E

F

G

B

C
E'

• Establish a third connection

• Log in allocates chunks 0x200 3 times

• Establish a third connection

• Log in allocates chunks 0x200 3 times

• #1: allocates E, overwrite the fd of E'
size 0x600

A

D

size 0x200

E

F

G

B

C

E'

anywhere

• Establish a third connection

• Log in allocates chunks 0x200 3 times

• #1: allocates E, overwrite the fd of E'

• #2: allocates E'

size 0x600

A

D

size 0x200

E

F

G

B

C

E'

anywhere

• Establish a third connection

• Log in allocates chunks 0x200 3 times

• #1: allocates E, overwrite the fd of E'

• #2: allocates E'

• #3: allocates "anywhere" ⇒ arbitrary write

size 0x600

A

D

size 0x200

E

F

G

B

C

E'

anywhere

• Establish a third connection

• Log in allocates chunks 0x200 3 times

• #1: allocates E, overwrite the fd of E'

• #2: allocates E'

• #3: allocates "anywhere" ⇒ arbitrary write

size 0x600

A

D

size 0x200

E

F

G

B

C

E'

anywhere

• No ASLR, no NX ⇒ return to shellcode

Arbitrary Code Execution, but…

• Firmware is modified from µC/OS, there’s no shell

• In an isolated environment

Changing Scope 

• OOB is capable of resetting NAS

• Mode 2 Reset: preserve data + reinstall ⇒ Get full admin privilege on NAS

• Code execution in OOB (network socket) ⇒ We’re in intranet when resetting

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 10.0 (Critical)

alloc_session 

• session_pool is a global variable

• Store structures of SSH session

Race Condition 

• OOB has 2 threads processing SSH

• No lock when allocating session

What happens if we raced the same session?

• Raced an admin session ⇒ log in OOB

• Need user interaction + precise timing

• CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:H 6.8 (Medium)

• Too mediocre and uninteresting

What if we race our own session?

• Control the timing of both connections

⇒ success rate ↑ ↑ ↑

• The buffers of 2 sessions will be the same

• When disconnecting, they will free the same buffer

• Double free!

Tcache Dup Attack 

size 0x100

BA

C

D

Tcache Dup Attack 

• free(A)

size 0x100

B

A

C

D

Tcache Dup Attack 

• free(A)

• free(A) size 0x100

B

A

C

D

Tcache Dup Attack 

• free(A)

• free(A)

• malloc(0x100) gets A, overwrite A’s fd

size 0x100

B

A

C

D

A anywhere

Tcache Dup Attack 

• free(A)

• free(A)

• malloc(0x100) gets A, overwrite A’s fd

• malloc(0x100) gets A again

size 0x100

BA

C

D

A anywhere

Tcache Dup Attack 

• free(A)

• free(A)

• malloc(0x100) gets A, overwrite A’s fd

• malloc(0x100) gets A again

• malloc(0x100) gets "anywhere"

• Arbitrary memory write

size 0x100

BA

C

D

A

anywhere

Changing Scope 

• Write stack ⇒ return to shellcode ⇒ reset NAS ⇒ get admin RCE

• CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:H 6.8 (Medium)

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 10.0 (Critical)

Changing Scope 

• Write stack ⇒ return to shellcode ⇒ reset NAS ⇒ get admin RCE

• CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:H 6.8 (Medium)

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 10.0 (Critical)

Everything going too smoothly…?

Session is a complex structure, no segfault during exploitation?

Everything going too smoothly…?

Session is a complex structure, no segfault during exploitation?

• Dereferencing an invalid address results in 0xdeadbeef

• Dereferencing 0xdeadbeef results in 0 [invalid address] → 0xdeadbeef → 0 → 0xdeadbeef → …

• Moreover, every address is writable [invalid address] → 0xdeadbeef → 0x1234 → 0xdeadbeef → …

Everything going too smoothly…?

Session is a complex structure, no segfault during exploitation?

• Dereferencing an invalid address results in 0xdeadbeef

• Dereferencing 0xdeadbeef results in 0 [invalid address] → 0xdeadbeef → 0 → 0xdeadbeef → …

• Moreover, every address is writable [invalid address] → 0xdeadbeef → 0x1234 → 0xdeadbeef → …

• Windows, Linux, macOS should all implement this :)

Mitigation 

Mitigation 

• For DS3622xs+, FS3410 and HD6500:

Update to DSM 7.1.1-42962-2 or above

Conclusion 

Conclusion 

• New attack surface for specific NAS

• Firmwares are troublesome to analyze, but also rewarding

• Due to the lack of security measurements (ASLR, NX, canary, …)

• µC/OS is the best OS

Thank You! 

@kevingwn_ 
kevingwnn@gmail.com 

