
Cracking the Pixel 8: Exploiting
the Undocumented DSP to

Bypass MTE

PAN ZHENPENG & JHENG BING JHONG

About us

● Pan Zhenpeng(@peterpan980927), Principal Researcher at STAR Labs
● Jheng Bing Jhong(@st424204),Principal Researcher at STAR Labs

Agenda

● Backgrounds
● Bug analysis
● DSP exploit
● MTE on Android
● Conclusion

Android Kernel mitigations

● Android 14 kernel (5.4/5.10/5.15/6.1/6.6)
● PAN/PXN
● UAO
● CFI
● PAC
● MTE
● KASLR
● CONFIG_INIT_STACK_ALL_ZERO
● CONFIG_INIT_ON_ALLOC_DEFAULT_ON
● CONFIG_DEBUG_LIST/CONFIG_SLAB_FREELIST_RANDOM/…
● Vendor independent mitigations (KNOX/DEFEX/PhysASLR/…)

Android exploits

● Universal exploit
● Chipset specific exploit
● Vendor specific exploit
● Model specific exploit

Android exploits

● Universal exploit
○ Linux kernel bugs: net, binder, etc…

● Chipset specific exploit
● Vendor specific exploit
● Model specific exploit

Android exploits

● Universal exploit
○ Linux kernel bugs: net, binder, etc…

● Chipset specific exploit
○ Mali GPU, Qualcomm GPU, etc…

● Vendor specific exploit
● Model specific exploit

Android exploits

● Universal exploit
○ Linux kernel bugs: net, binder, etc…

● Chipset specific exploit
○ Mali GPU, Qualcomm GPU, etc…

● Vendor specific exploit
○ Samsung NPU, Xclipse GPU, Huawei Maleoon GPU, etc…

● Model specific exploit

Android exploits

● Universal exploit
○ Linux kernel bugs: net, binder, etc…

● Chipset specific exploit
○ Mali GPU, Qualcomm GPU, etc…

● Vendor specific exploit
○ Samsung NPU, Xclipse GPU, Huawei Maleoon GPU, etc…

● Model specific exploit
○ Pixel X driver A, Samsung [A/S/Z] XX driver B, etc…

Android exploits

● Universal exploit
○ Linux kernel bugs: net, binder, etc…

● Chipset specific exploit
○ Mali GPU, Qualcomm GPU, etc…

● Vendor specific exploit
○ Samsung NPU, Xclipse GPU, etc…

● Model specific exploit
○ Pixel X driver A, Samsung [A/S/Z] XX driver B, etc…

Pixel Driver Attack Surfaces

● Pixel TPU(edgeTPU)
● Pixel LWIS(Lightweight image processing)
● Pixel GXP(DSP)
● Pixel GPU(Mali Pixel)

Why Pixel GXP?

● First introduced in Pixel 7 (2022)
● No public informations
● No developer toolchains
● No past CVEs or exploits

https://www.androidauthority.com/exclusive-google-tensor-g4-3363795/

Why Pixel GXP?

● GXP can be used by untrusted_app context
● sesearch --allow policy -s untrusted_app -t gxp_device
● allow untrusted_app_all gxp_device:chr_file { getattr ioctl map read write };

Why Pixel GXP?

● If you look carefully, you will find untrusted_app context do not have open
permissions

● allow untrusted_app_all edgetpu_app_service:service_manager find;
● allow edgetpu_app_server gxp_device:chr_file { append getattr ioctl lock map

open read watch watch_reads write };

Why Pixel GXP?

● We can make edgetpu service send driver fd back
● untrusted_app open /vendor/lib64/libedgetpu_client.google.so to call

GetDspFd that interact with com.google.edgetpu.IEdgeTpuAppService
● Everything looks fine here.

Why Pixel GXP?

● But edgetpu_app_server won’t simply pass the fd to us xD
● It will check the calling process’s signature, only those in allowlist will get fd

Why Pixel GXP?

● But with code execution in those apps we can still reach the attack surface
● The Signature check do not prevent us from installing Older/Vulnerable

versions of allow list apps
● A lot of apps in the allowlist are not installed by default, which means the

“Downgrade mitigation” also not work for us.

Pixel GXP Introduce

● GXP replaces the GPU in many common image processing steps, such as
deblurring and local tone mapping

● It closely collaborates with the existing EdgeTPU on Pixel devices to optimize
performance and efficiency.

Pixel GXP Introduce

● Google’s Camera app can directly take advantage of GXP to do acceleration
○ allow google_camera_app gxp_device:chr_file { append getattr ioctl lock map open read

watch watch_reads write };
● Interestingly, the Google TPU share exactly the same policy as GXP

○ allow google_camera_app edgetpu_device:chr_file { getattr ioctl map read write };
○ allow appdomain binderservicedomain:binder { call transfer };
○ allow appdomain binderservicedomain:fd use;
○ allow untrusted_app_all edgetpu_device:chr_file { getattr ioctl map read write };

Pixel GXP Introduce

● For edgeTPU and GXP, the difference is edgeTPU has one reported bug
○ CVE-2023-35645

https://project-zero.issues.chromium.org/issues/42451599

Pixel GXP Introduce

● For edgeTPU and GXP, the difference is edgeTPU has one reported bug
○ CVE-2023-35645

https://project-zero.issues.chromium.org/issues/42451599

XPU Attach Surfaces

● We didn’t find this kind of bug in GXP
● But there’s many research on other different coprocessors

○ Mali GPU
○ Qualcomm GPU
○ Qualcomm DSP
○ Lwis (Pixel light weight image processing)
○ Samsung Exynos NPU
○ Samsung Exynos GPU
○ …

● Can we migrate ideas from “XPU” attack to get easy win?

XPU Attach Surfaces

● Write to Read-Only Files
○ E.g: CVE-2022-0847 (dirtypipe)

XPU Attach Surfaces

● Write on Read-Only memory
○ E.g: CVE-2021-28664

https://www.bernardlampe.com/pub/Grayshift-CVE-2021-28664.pdf

XPU Attach Surfaces

● Dangling PTE Page UaF
○ E.g: CVE-2022-36449

https://project-zero.issues.chromium.org/issues/42451459

XPU Attach Surfaces

● Shrinker Page UaF
○ E.g: CVE-2024-32929

https://android.googlesource.com/kernel/google-modules/gpu/+/0ade90bc0ce15b8bfc74a7a42e1a48a4b1d1312f%5E%21/#F0

XPU Attach Surfaces

● Shrinker Page UaF
○ E.g: CVE-2024-32929

https://android.googlesource.com/kernel/google-modules/gpu/+/0ade90bc0ce15b8bfc74a7a42e1a48a4b1d1312f%5E%21/#F0

Agenda

● Backgrounds
● Bug analysis
● DSP exploit
● MTE on Android
● Conclusion

Bug analysis

● In function gxp_mapping_create, the foll_flags not associated with the dir user
passed

Bug analysis

● which means device might can still write to this device, thus we can write a
read-only region in AP by device.

Proof-Of-Concept

● We have an “in theory” write read-only bug now
● But how to prove?

Proof-Of-Concept

● Let’s take a step back
● If we have a write read-only bug on GPU, how to verify?

Proof-Of-Concept

● Write read-only on import memory from CPU side
○ Create a CPU read-only memory cpu_ro
○ Import to GPU side and create cpu_rw mapping by bug
○ Directly write to cpu_rw

Proof-Of-Concept

● Write read-only on import memory from GPU side
○ Create a CPU read-only memory cpu_ro
○ Import to GPU side and it’s marked as rw in GPU MMU
○ Use OpenCL/Reversed ioctl to submit GPU write request (a bit more complex, but not much)

Proof-Of-Concept

● How about our case?
○ Gxp support import pages, but it won’t remap to another CPU address
○ Gxp don’t have public infos or toolchains, there’s no OpenCL for Gxp to use

First Attempt

● Emulation
○ Even if there’s no OpenCL, maybe we can find the firmware of the GXP
○ Use qemu to emulate the GXP firmware
○ Reverse firmware to find the place of write memory handler
○ Use qemu to verify our test.
○ Let’s go!

First Attempt

● Emulation
● The firmware init by init_mcu_firmware_buf

First Attempt

● Emulation
● By dumping the buf->vaddr, we can get the firmware

First Attempt

● Emulation
● After load it into IDA, seems this one is what we want, let’s emulate and

reverse to get it work!

First Attempt

Failed First Attempt

● Qemu didn’t support this arch, many instructions just failed or didn’t work as
expected even after some patch

● We are a bit lazy to reverse the no symbol firmware xD

Second Attempt

● Record and Replay
○ Basic idea is using some tool to hook the process using the GXP driver and observe how it

send the ioctl to write the memory

Second Attempt

● Record and Replay
○ First to figure out which app can use gxp device.
○ From previous explore, we already know it’s Google Camera and those apps in allow list
○ But to perform record and replay, we better choose the one do the heavy usage on it
○ allow google_camera_app gxp_device:chr_file { append getattr ioctl lock map open read

watch watch_reads write }

Second Attempt

● Record and Replay
○ From google_camera_app process’s maps, there is a interesting library named libgxp.so

r-xp 00000000 fe:0b 3854 /vendor/lib64/libgxp.so
○ It should be the core library to use gxp device driver

Second Attempt

● Record and Replay
○ In libgxp.so, we can roughly know something from function name

Second Attempt

● Record and Replay
○ Use Frida to trace the function usage
○ Frida is a dynamic instrumentation toolkit for developers, reverse-engineers, and security

researchers

Second Attempt

● Record and Replay
○ Hook target process’s ioctl function call
○ Interceptor.attach(Module.getExportByName(null, 'ioctl')

Second Attempt

● Record and Replay
○ Hook process’s libgxp.so external function call
○ var m = Process.findModuleByName("libgxp.so")
○ for (var i = 0; i < Ex.length; i++) {

■ Interceptor.attach(Module.getExportByName("libgxp.so", Ex[i].name)

Second Attempt

● Record and Replay
○ With Frida, we can trace how app using ioctl to interact with gxp device
○ With Frida, we can know the correct function sequence to interact with gxp device
○ We just record a successful function calls pattern to reach our vulnerable driver code, which is

from GxpCapi_OpenNamedLibraryFromBuffer

Verify the bug

● Record and Replay
○ Pass read-only memory to GxpCapi_OpenNamedLibraryFromBuffer, we can successfully

write our PoC to reproduce write read-only files.

Bug patch

● Google refactored the whole code in GXP, the driver now will first get the
gup_flags from host_address’s vma

Bug patch

● Then it will setup gcip_map_flags based on the gup_flags and pass to gxp
mmu setup function

Agenda

● Backgrounds
● Bug analysis
● DSP exploit
● MTE on Android
● Conclusion

DSP Exploit

● Write read-only files exploits is already very strong exploit primitive, we can
follow the DirtyPipe exploit path on Android

○ Trigger write-ro to overwrite libc++.so
○ Hijack init by setprop and trigger write-ro again to write kernel module payload
○ Fork from init and change context to modprobe and load kernel module
○ Use kernel module to bypass selinux and get root

https://hitcon.org/2022/slides/How%20we%20use%20Dirty%20Pipe%20to%20get%20reverse%20root%20shell%20on%20Android%20Emulator%20and%20Pixel%206.pdf

DSP Exploit

● Trigger write-ro to overwrite libc++.so
● Hijack init by setprop and trigger write-ro again to write kernel module payload
● 🙅

DSP Exploit

● In DirtyPipe the bug resides in syscall, and init do not have seccomp
● In our case, the policy is allow init gxp_device:chr_file setattr;

DSP Exploit

● After some time exploring the selinux policy, we found another path
○ allow hal_camera_default gxp_device:chr_file { append getattr ioctl lock map open read watch

watch_reads write };
○ type_transition init hal_camera_default_exec:process hal_camera_default;
○ allow hal_camera_default vendor_file_type:dir { getattr ioctl lock open read search watch

watch_reads };
○ allow hal_camera_default vendor_file_type:file { execute getattr map open read };

DSP Exploit

● So we now need hijack android.hardware.camera.provider to exploit write-ro
again to put kernel module payload

○ Android.hardware.camera.provider (hal_camera_default) not like init can
be stably triggered by setprop

○ We found that it will automatically do some log when it restarts
○ Maybe we can force restart it and use liblog.so to hijack it?

DSP Exploit

● Force restart android.hardware.camera.provider
○ If attack from untrusted_app, we won’t know the pid of it
○ In the hijacked init process, we have namespace isolation, also can’t use pidof to get it

● But we found android.hardware.camera.provider is a system service which
launched at the early boot stage

● Because of that, the pid of it is in a small range across each boot
● After forcing init to kill the pid range, we can successfully hijack

android.hardware.camera.provider to do the second stage attack

DSP Exploit

Summary the exploit flow

● Overwrite libext2fs.so with our library’s content
● Overwrite libc++.so to hijack init and

android.hardware.camera.provider@2.7-service-google
● init kill android.hardware.camera.provider@2.7-service-google to trigger the hijack,

the hijack will dlopen libext2fs.so
● android.hardware.camera.provider@2.7-service-google exploit the bug again to

overwrite /vendor/bin/modprobe(reverse shell payload) and
/vendor/lib64/libExynosC2Vp9Dec.so(kernel module payload)

● Init then execute modprobe to load ko to disable selinux and launch reverse shell

DSP Exploit Demo

https://docs.google.com/file/d/1ZHoY6zvv7u_eU1iNcRtHvNfsz4NpB5Az/preview

DSP Exploit Demo

Agenda

● Backgrounds
● Bug analysis
● DSP exploit
● MTE on Android
● Conclusion

Arm Memory Tagging Extension (MTE)

● The Memory Tagging Extension (MTE) is a security feature on newer Arm
processors(Armv8.5a) that uses hardware implementations to check for
memory corruptions or other bug types.

● For Android, it first introduced in Pixel8 as a non default feature.
● adb shell setprop arm64.memtag.bootctl memtag,memtag-kernel

Arm Memory Tagging Extension (MTE)

● It’s been a hot topic for security researchers since first out

Arm Memory Tagging Extension (MTE)

● MTE store tags in unused higher bits in address space

Will MTE end the game in Real World?

● For memory corruption bugs, it seems the end of the game
● But Android is famous for the Lego Ecosystem. Besides Google, there’s

Samsung/Xiaomi/Huawei/Vivo/Oppo/Oneplus/…
● Most vendors will choose not open it by default for better performance

MTE bypass

● MTE is born for memory corruption bugs
● For logic vulnerabilities, MTE can not prevent attacker to do privilege escalate

Agenda

● Backgrounds
● Bug analysis
● DSP exploit
● MTE on Android
● Conclusion

Conclusion

● Record and replay to break closed source devices
● Page level memory corrupt with coprocessor or logic bugs are also “born to

bypass MTE”
● Logic bugs like write read-only will always win if there’s no runtime signature

check

Timeline

● Found bug and write exploit at mid 2024
● Report to Google at Sep 2, 2024
● Asked for non pre-compiled lib at Oct 17, 2024
● Send back new one to Google at Oct 19, 2024
● Google announced bug bounty reward at Nov 9, 2024
● Bug addressed in 25Q1 update of Android release

Timeline

● Found bug and write exploit at mid 2024
● Report to Google at Sep 2, 2024
● Asked for non pre-compiled lib at Oct 17, 2024
● Send back new one to Google at Oct 19, 2024
● Google announced bug bounty reward at Nov 9, 2024
● Bug addressed in 25Q1 update of Android release
● …
● Not the end of story~

References

● HITCON 2022 - How we use Dirty Pipe to get reverse root shell on Android
Emulator and Pixel 6

● Memory Tagging Extension: Enhancing memory safety through architecture
● Two Bugs With One PoC: Rooting Pixel 6 From Android 12 to Android 13
● Dynamic instrumentation toolkit for developers, reverse-engineers, and

security researchers.
● Project Zero Race conditions issues for edgeTPU

https://hitcon.org/2022/sessions/4b9ac6ce-dcbf-43ef-a570-ad1d27b9d68c/
https://hitcon.org/2022/sessions/4b9ac6ce-dcbf-43ef-a570-ad1d27b9d68c/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://i.blackhat.com/Asia-23/AS-23-WANG-Two-bugs-with-one-PoC-Rooting-Pixel-6-from-Android-12-to-Android-13.pdf
https://frida.re/
https://frida.re/
https://project-zero.issues.chromium.org/issues/42451599

Q & A
Thanks for listening

